
How to Be a Git
Wizard

Geoff Pleiss

Goals

• (Be less afraid of git)

• Use git to empower your research

• Better code/experiment collaborations

The golden rule of Git

“Commit early and commit often”

The golden rule of Git

“Commit early and commit often”
… but tell a story

The NEW Golden Rule

Treat your Git history as a first-class object

• Git history = automatic lab notebook	

• Collaborate with confidence

• Easier to uncover bugs

• Higher quality code

The Philosophy
A commit should be a atomic + complete +
workable idea

Why is this Good?

• Each commit is runable code

• Living research notebook

• Easy to revert/undo changes

Secret Git Commands to
Improve Your History

• .gitignore / git clean -nd

• git commit --amend

• git revert

• git add/checkout/reset -p

• git rebase -i

Don’t Dirty Your Repo
with .DS_Store, *.pyc, etc.

• .gitignore (prevent useless files from being
tracked)

• Github has many language-specific .gitignore
files that you can prepopulate your repository
with

• git clean -df (remove untracked files)

One Fun Trick

echo “data/*” >> .gitignore

touch data/.gitkeep

git add -f data/.gitkeep

git commit -m “Prepopulate project with a data
folder (but don’t add any actual datasets)”

Make Each Commit Atomic
(w/ Patch Mode)

• git add -p <file_pattern> (choose which lines to
stage)

• git reset -p <file_pattern> (choose which lines
to unstage)

• git checkout -p <file_pattern> (choose which
lines to undo)

Aside: mastering git reset

• git reset --soft HEAD^ (undo the last commit,
but keep the changes in you working directly)

• git reset --hard HEAD^ (undo the last commit,
and completely remove the changes)

• git revert HEAD^ (add a new commit that
undoes the last previous commit - good if you
have already pushed your last commit!)

THE BEST COMMAND OF
ALL TIME!!!

(AKA how to rewrite history)

• git rebase -i HEAD^^^^^
• Merge WIP commits into a single commit

• Reorder commits

• WARNING: You can’t (shouldn’t) rewrite the

history after you’ve pushed!

Writing Good Code With
Others

(and how git can help)

The Pull Request Strategy

Everything must be a pull request!

Everything is developed on branches

The Golden Rules For Branches

(AKA “Merge Early Merge Often”)

• If a branch is > 5 commits long, merge it

• If a branch is > 1 week old, delete it

Why is this Good?

• Enforces (quick) code review

• New “features” are easier to digest/understand

• Code doesn’t become stale

The 3 Branch Strategies

• git merge --ff-only <branch> (forces no merge
commit)

• git merge --no-ff <branch> (forces merge
commit)

• git rebase <branch> (your commits are merged
on top of <branch>)

My Strategy For Clean
History

git checkout my_branch

… write good code

git checkout main

git pull origin main

Now to update my_branch to build off of main

git checkout my_branch

git rebase master

git checkout master && git merge my_branch --no-ff # or make a PR

Other Tips for Working
Effectively with Others

• Have only 1-2 runnable files

• This forces you to write reusable code, and
forces everyone to work on the same files

• More effort at first, but it pays off!

• git blame is your friend!

Aside: mastering git diff
• git diff (what’s new and unstaged since my last commit)

• git diff -w (what’s new and unstaged, ignoring
whitespace)

• git diff --cached (what’s new and staged since my last
commit)

• git diff <sha>..master (what’s changed since <sha>)

• git diff <sha>..master --stat (only list the changed
filenames)

“Oh @&$#!”

(Solving a Git Crisis)

“Ahhhhhh Conflicts!!!”

• git merge --abort

• git rebase --abort

• (You’ll still have to resolve conflicts some day,
but maybe you can clean your commits first!)

“Ahhhhhhh I Deleted A
Commit!”

• (This happens when you rebase too
aggressively)

• git reflog (the unchangeable git history)

• Pair this with git cherry-pick <sha> (add a
single commit to your history)

“Ahhhhhhh How Long Has This
Bug Been In The Codebase?”

• git bisect (efficient binary search to find the first
“bad” commit)

