How to Be a Git
Wizard

Geoff Pleiss

Goals

* (Be less afraid of git)

“‘Commit early and commit often”

“‘Commit early and commit often”
... but tell a stor

The NEW Golden Rule

Treat your Git history as a first-class object
* (it history = automatic lab notebook

+ Collaborate with confidence

Ihe Pnilosophy

A commit should be a atomic + complete +
workable idea

cf0c9eba - update notebook (1 year, 4 months ago)
464614e3 - cleanup documentation & log var ratio (
d3a0e545 - add tests and notebook (1 year, 4 month
974b394a - wip: todo testing and notebook (1 year,
e2e5f0e’ = edits for code review (1 year, 4 months

/3618409 - Fix matrix multiplication of rectangular ZeroLazyTensor (#1295) (5 months ago)
6171616b = New model class: Bayesian GPLVM with Stochastic Variational Inference (#1605)
”ZJ}ﬁxsr - Add example notebook that demos binary classification with Polya-Gamma augment:

Why is this Good"

e Fach commit is runable code

Secret Git Commands to
Improve Your History

* .gitignore / git clean -nd

e git commit --amend

Don't Dirty Your Repo
with .DS_Store, *.pyc, etc.

e _gitignore (prevent useless files from being
tracked)

» Github has many language-specific .gitignore

--an a .4_ '.. \ .—ﬂ ﬂ ‘,.5 ‘-E_ﬂ -.’_ ﬂ J

One Fun Trick

echo “data/*" >> .gitignore

touch data/.gitkeep

Make Each Commit Atomic
(w/ Patch Mode)

» git add -p <file_pattern> (choose which lines to
stage)

 git reset -p <file_pattern> (choose which lines
o dnstage) i . - e

Aside: mastering

git reset

e git reset --soft HEAD” (undo the last commit,
but keep the changes in you working directly)

» git reset --hard HEADA? (undo t
and completely remove the cha

ne last commit,

Nges)

THE BEST COMMAND OF
ALL TIME!!
(AKA how to rewrite history)

e git rebase -i HEADAAAAA
e Merge WIP commits into a single commit
 Reorder commits

 WARNING: You can't (shouldn'’t) rewrite the
history after you've pushed!

Writing Good Code With
Others

The Pull Request Strategy

Branch protection rules Add rule

Define branch protection rules to disable force pushing, prevent branches from being deleted, and optionally require
status checks before merging. New to branch protection rules? Learn more.

master Currently applies to 1 branch Edit Delete

-verything must be a pull request!

—verything is developed on branches

The Golden Rules For Branches
(AKA “Merge Early Merge Often”)

e |fabranchis > 5 commits long, merge it

Why is this Good"

* Enforces (quick) code review

(1) . .
- Nlew 1. a Are AAIAar 10O Alae Naerstana

The 3 Branch Strategies

- git merge --ff-only <branch> (forces no merge
commit)

- git merge --no-ff <branch> (forces merge

My Strategy For Clean
History

git checkout my_branch
... write good code
git checkout main

git pull origin main

Other Tips tor Working
Effectively with Others

- Have only 1-2 runnable files

- This forces you to write reusable code, and
forces everyone to work on the same files

" - Ry | . San GESanb

Aside: mastering git dift

- git diff (what's new and unstaged since my last commit)

- git diff -w (what's new and unstaged, ignoring
whitespace)

- git diff --cached (what's new and staged since my last

‘Oh @&S$#!”

"Ahhhhhh Contlicts!!!”

e @it merge --abort

* git rebase --abort

"Anhhhhnhn | Deleted A
Commit!”

* (This happens when you rebase too
aggressively)

- git refloc (the unchangeable git history)

ﬁ‘ s

‘Ahhhhhhh How Long Has This
Bug Been In The Codebase””

- git bisect (efficient binary search to find the first

