Multivariate Gaussian Cheat Sheet
GEOFF PLEISS

Definition (Multivariate Gaussian). Let y be a d-dimensional vector-valued random variable. y is mul-
tivariate Gaussian if and only all linear combination of its entries are univariate Gaussian; i.e. for all

c € R, we have that p(c"y = a) = (2m0?) "2 exp <—ﬁ (a — ,u)Q) for some p,0 € R.

1) Multivariate Gaussian Density

Let y be a multivariate Gaussian random variable with mean E[y] = p and covariance E[(y—p)(y—p) '] =
K. The probability density of y is given by:

Py = a) = N (a; 1, K) = 2n K| exp (~3(a - ) 'K (a — ). (1)

We will use the notation y ~ N(p, K), p(y) = N(p, K), and p(y = a) = N(a; p, K) interchangeably.
All should be read as “y is a multivariate Gaussian random variable with mean g and covariance K.”

2) Important Multivariate Gaussian Closures

Many important operations on multivariate Gaussians preserve Gaussianity.

1. Closure under affine transformation. Let y ~ N (u, K). Given matrix A and vector b, we have:
(Ay +b) ~ N (Au +b, AKAT) . (2)

(For Gaussian processes with appropriate regularity conditions, this property can be generalized to
closure under arbitrary linear operations.)

2. Closure under linear combination. Now let y' ~ N (', K”). If yly' (read: y and y' are
independent random variables), then

(y+y)~N(p+u K+K"). (3)
(This property is analogously extended to Gaussian processes.)

3. Closure under marginalization. Given the following block multivariate Gaussian random vari-
able, we have:

m NN(m ) [Iﬁfv ;‘LD —  p(y) Z/p<[5,]>dy/:N(u,K). (4)

(This property naturally applies to Gaussian processes by definition: any finite subset of Gaussian
process evaluations are multivariate Gaussian distributed.)

4. Closure under conditioning. With the same block random variable, we have:
(W |y=a)=N (K’TK—la, K" - K/TK—lK) . (5)

We will often drop the = a and simply write vy’ | y.



3)

Other Useful Properties

. Uncorrelation implies independence. Two random variables y and ¢’ are uncorrelated if E[(y —

E[y])(v' —E[y']) "] = 0. For arbitrary random variables, uncorrelation does not imply independence.
However, for multivariate Gaussians:

y 0 K K
|:,y/] ~N <|:O:| ) |:K/T K" : K'=0 & yJ_y/ (6)
. Conditional variances from the Cholesky factorization. The Cholesky factor of the (positive-
definite) covariance matrix K is the unique lower triangular matrix L such that 1) LLT = K
and 2) L;; > 0 for all i. Consider the N-dimensional multivariate Gaussian random variable
[yl e yN] y ~ N(0, K). We can write the density of y in autoregressive form:
p(y) = p(y1 ) xp(y2 [ y1) x p(ys [ y1,92) X ... xplyn [ v1,. .-, yn-1)- (7)
—~— —— —
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We can interpret Eq. as sequential Bayesian inference. We first consider the random variable y;.
After observing y;, we then consider ys (conditioned on our observation). After observing y,, we
then consider y3 (conditioning on our observations). And so on.

By Eq. , z1, ..., 2y are univariate Gaussians. The Cholesky factor gives us a convenient way to
automatically compute the variance of these conditional random variables:

Vizi) = Vyi | y1,- .., yi1) = L. (8)

. Sampling. To draw a sample from N (u, K), we often use the following computational routine:

e Use e.g. np.random.randn to draw a sample € ~ N (0, I)

e Compute Le 4+ u, where L is the Cholesky factor of K.

We do not specifically need to use the matrix L in the second step; we could instead use any matrix
A such that AAT = K. (Note that all matrices A that satisfy this condition are equivalent to L up
to an orthogonal rotation. In other words, there exists some orthogonal matrix @ so that A = QL.)

. Sequences. Consider a sequence of multivariate Gaussian variables {y; ~ N (u;, K;)}, where {u;}

and {K;} represent a sequence of means and covariances, respectively. (Weak) convergence of y; is
uniquely determined by convergence of the mean/covariance sequences:

(wt = (K} =K = {py)} =% N(pK) 9)
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