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Definition (Multivariate Gaussian). Let y be a d-dimensional vector-valued random variable. y is mul-
tivariate Gaussian if and only all linear combination of its entries are univariate Gaussian; i.e. for all

c ∈ Rd, we have that p(c>y = a) = (2πσ2)−1/2 exp
(
− 1

2σ2 (a− µ)2
)
for some µ, σ ∈ R.

1) Multivariate Gaussian Density

Let y be a multivariate Gaussian random variable with mean E[y] = µ and covariance E[(y−µ)(y−µ)>] =
K. The probability density of y is given by:

p(y = a) = N (a;µ,K) := |2πK|−1/2 exp
(
−1

2(a− µ)>K−1(a− µ)
)
. (1)

We will use the notation y ∼ N (µ,K), p(y) = N (µ,K), and p(y = a) = N (a;µ,K) interchangeably.
All should be read as “y is a multivariate Gaussian random variable with mean µ and covariance K.”

2) Important Multivariate Gaussian Closures

Many important operations on multivariate Gaussians preserve Gaussianity.

1. Closure under affine transformation. Let y ∼ N (µ,K). Given matrix A and vector b, we have:

(Ay + b) ∼ N
(
Aµ+ b,AKA>

)
. (2)

(For Gaussian processes with appropriate regularity conditions, this property can be generalized to
closure under arbitrary linear operations.)

2. Closure under linear combination. Now let y′ ∼ N (µ′,K ′′). If y⊥y′ (read: y and y′ are
independent random variables), then(

y + y′
)
∼ N

(
µ+ µ′,K +K ′′

)
. (3)

(This property is analogously extended to Gaussian processes.)

3. Closure under marginalization. Given the following block multivariate Gaussian random vari-
able, we have:[

y
y′

]
∼ N

([
0
0

]
,

[
K K ′

K ′> K ′′

])
=⇒ p(y) =

∫
p

([
y
y′

])
dy′ = N (µ,K). (4)

(This property naturally applies to Gaussian processes by definition: any finite subset of Gaussian
process evaluations are multivariate Gaussian distributed.)

4. Closure under conditioning. With the same block random variable, we have:(
y′ | y = a

)
= N

(
K ′>K−1a, K ′′ −K ′>K−1K

)
. (5)

We will often drop the = a and simply write y′ | y.



3) Other Useful Properties

1. Uncorrelation implies independence. Two random variables y and y′ are uncorrelated if E[(y−
E[y])(y′−E[y′])>] = 0. For arbitrary random variables, uncorrelation does not imply independence.
However, for multivariate Gaussians:[

y
y′

]
∼ N

([
0
0

]
,

[
K K ′

K ′> K ′′

])
: K ′ = 0 ⇔ y⊥y′ (6)

2. Conditional variances from the Cholesky factorization. The Cholesky factor of the (positive-
definite) covariance matrix K is the unique lower triangular matrix L such that 1) LL> = K
and 2) Lii > 0 for all i. Consider the N -dimensional multivariate Gaussian random variable[
y1 · · · yN

]
y ∼ N (0,K). We can write the density of y in autoregressive form:

p(y) = p( y1︸︷︷︸
:=z1

)× p(y2 | y1︸ ︷︷ ︸
:=z2

)× p(y3 | y1, y2︸ ︷︷ ︸
:=z3

)× . . .× p(yN | y1, . . . , yN−1︸ ︷︷ ︸
:=zN

). (7)

We can interpret Eq. (7) as sequential Bayesian inference. We first consider the random variable y1.
After observing y1, we then consider y2 (conditioned on our observation). After observing y2, we
then consider y3 (conditioning on our observations). And so on.

By Eq. (4), z1, . . ., zN are univariate Gaussians. The Cholesky factor gives us a convenient way to
automatically compute the variance of these conditional random variables:

V[zi] = V[yi | y1, . . . , yi−1] = L2
ii. (8)

3. Sampling. To draw a sample from N (µ,K), we often use the following computational routine:

• Use e.g. np.random.randn to draw a sample ε ∼ N (0, I)

• Compute Lε+ µ, where L is the Cholesky factor of K.

We do not specifically need to use the matrix L in the second step; we could instead use any matrix
A such that AA> = K. (Note that all matrices A that satisfy this condition are equivalent to L up
to an orthogonal rotation. In other words, there exists some orthogonal matrix Q so that A = QL.)

4. Sequences. Consider a sequence of multivariate Gaussian variables {yi ∼ N (µi,Ki)}, where {µi}
and {Ki} represent a sequence of means and covariances, respectively. (Weak) convergence of yi is
uniquely determined by convergence of the mean/covariance sequences:

{µi} → µ, {Ki} →K =⇒ {p(yi)}
dist.−→ N (µ,K) (9)
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