
STAT520P Diagnostic Problem Set
Geoff Pleiss

The purpose of this problem set is to ensure that you feel comfortable with multivariate Gaussian
distributions and their manipulations. (They come up a lot in Bayesian optimization.)

If you have a strong background in Bayesian statistics, this problem set should be fairly straightfor-
ward. (Hopefully you will learn a new derivation or two!) If you are new to Gaussian distributions,
this problem set should build fluency that you will need for the class. If these problems feels
extremely difficult, then you will likely find this course to be technically overwhelming.

A quick note on notation. Variable names should use the following convention:

• deterministic scalars will be represented by lowercase/non-bold letters (e.g. a, θ, etc.);

• deterministic vectors will be represented by lowercase/bold letters (e.g. a, θ, etc.);

• deterministic matrices will be represented by uppercase/bold letters (e.g. A, Θ, etc.); and

• all random variables—scalar, vector, or matrix—will be represented by uppercase/non-bold
letters (e.g. A, Θ, etc.).

(For the rest of the course, we will often use the same notation for deterministic and random
variables. However, I am differentiating them in this problem set for clarity.)

p(Y = a) refers to the density of the random variable Y evaluated at a. N (a;µ, σ2) refers to the
function that evaluates the µ-mean σ2-variance Gaussian density on the scalar a ∈ R; i.e.

N
(
a;µ, σ2

)
= (2πσ2)−1/2 exp

(
− 1

2σ2 (a− µ)2
)
. (1)

With a slight abuse of notation, Y ∼ N (µ, σ2) should be read as “the random variable Y is Gaussian
distributed with mean µ and variance σ2”—i.e. p(Y = a) = N (a;µ, σ2). Analogous notation will
be used for multivariate Gaussian distributions (but you will first have to derive the density!).

In this problem set, you will deriving properties of Gaussian distributions from first principles. You
should solve all of these problems using only the following rules:

1. the sum rule—p(Y = a) =
∫
p(Y = a, Z = b)db;

2. the product rule—p(Y =a, Z = b) = p(Y =a | Z = b)p(Z = b) = p(Z = b | Y =a)p(Y =a);
with p(Y =a, Z=b) = p(Y =a)p(Z=b) if and only if Y and Z are independent;

3. the change of variables formula—if g(·) is a differentiable and bijective function, then

p(Y =a) = det (Jg(a)) p(g(Y )=g(a)),

where Jg(a) is the Jacobian matrix of g evaluated at a;

4. linearity of expectation—E[AY +BZ + c] = AE[Y ] +BE[Z] + c;

5. the univariate Gaussian density (Eq. 1); and

6. any linear algebraic identities that you want.
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1) (10 pts) The Univariate Linear Gaussian Identity

Consider the univariate Gaussian random variable Y ∼ N (µ, σ2).

1. (3 pts) Since N (a;µ, σ2) is a density, we have that∫ ∞
−∞

1

(2πσ2)1/2
e−

1
2σ2 (a−µ)2da = 1. (2)

Prove that E[Y − µ] = 0 and E[(Y − µ)2] = σ2 by differentiating both sides of Eq. (2).

2. (2 pts) Let Y, Y ′ ∼ N (0, 1) be two i.i.d. standard Gaussian random variables. Write out the
joint density p(Y =(b− a), Y ′=a) and simplify.

3. (3 pts) Using your answer above, prove that
∫∞
−∞ p(Y =(b−a))p(Y ′=a)da = (4π)−1/2 exp(− 1

22
b2).

(Hint: you should be able to prove this in 4 lines by completing the square and using Eq. (2).)

4. (2 pts) Based on the previous result, what can you say about the distribution of the random
variable Z = Y + Y ′?

The previous result is a special case of the linear Gaussian identity, which is arguably the most
powerful property of Gaussian distributions. More generally, if Y and Y ′ are independent Gaussian
random variables with Y ∼ N (µ, σ2) and Y ′ ∼ N (µ′, σ′2), then for any a, b, c ∈ R, we have

(aY + bY ′ + c) ∼ N
(
aµ+ bµ′ + c, a2σ2 + b2σ′2

)
. (3)

You can prove this result with the same techniques as above, but it requires more bookkeeping.

2) (10 pts) Multivariate Gaussian Random Variables

Note: Parts 1-5 (the questions in grey) are optional.

Definition: Let Y be a d-dimensional vector-valued random variable. Y is multivariate Gaussian
if and only all linear combination of its entries are univariate Gaussian; i.e. for all c ∈ Rd, we have
that c>Y ∼ N (µ, σ2) for some µ, σ ∈ R.

1. (Optional) Let U =
[
U1 . . . Ud

]
be a random d-dimensional vector, where U1, . . ., Ud are

all i.i.d. standard Gaussian random variables. (U1, . . . , Ud
i.i.d.∼ N (0, 1).) Prove that U meets

the definition of a multivariate Gaussian random variable.

2. (Optional) Consider the random vector Y = LU+µ, where µ and L are deterministic. Prove
that Y also meets the definition for a multivariate Gaussian random variable, and compute
its mean and covariance.

3. (Optional) Let Z be a multivariate Gaussian random variable where E[Z] = µ and
E[(Z − E[Z])(Z − E[Z])>] = LL>. Prove that, for any a ∈ R and c ∈ Rd, we have that
p((c>Z) = a) = p((c>(LU + µ)) = a). (Hint: use the fact that the density of a univariate
normal distribution is determined by its mean and variance.)
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The last fact, taken together with the Cramér-Wold theorem, implies that p(Z=a) = p((LU+µ)=
a) for all a ∈ Rd. In other words, two multivariate Gaussian random variables are equal in
distribution if they share the same mean and covariance. We will exploit this fact to derive a
density for Z.

4. (Optional) Write the joint density p(U = a) in matrix form.

5. (Optional) Assume that L is a square matrix, and define K = LL>. Using the change-of-
variables formula, prove that the density of LU + µ is

N (a;µ,K) := 1
|2πK|1/2 exp

(
−1

2(a− µ)>K−1(a− µ)
)
. (4)

These last two results demonstrate that if Z is multivariate Gaussian with mean µ and covariance
K, then the density of Z is given by Eq. (4). Moreover, we have also demonstrated that K = LL>,
and therefore the covariance must be positive semi-definite.

6. (5 pts) Consider the following multivariate Gaussian, written in block matrix form:[
Y
Y ′

]
∼ N

([
0
0

]
,

[
K K ′

K ′> K ′′

])
,

where Y is d-dimensional and Y ′ is d′-dimensional. Prove that if K ′ = 0 then Y and Y ′ are
independent Gaussian random variables.

7. (5 pts) Prove the following generalization of the linear Gaussian identity: if Y ∼ N (µ,LL>)
and Y ′ ∼ N (µ′,L′L′>) are independent multivariate Gaussian random variables, then

p
(
AY +BY ′ + c

)
∼ N (Aµ+Bµ′ + c, ALL>A> +BL′L′>B>). (5)

(Hint: you can prove this in 3-5 lines with some linear algebra. Use the fact that the random
variable Z ∼ N (µ,LL>) has the same distribution as (Lε+ µ) where ε ∼ N (0, I).)

3) (15 pts) Marginal and Conditional Distributions

Using results from the previous problems, answers to these sub-problems should each be about 1-5
lines long!

Consider the following multivariate Gaussian, written in block matrix form:[
Y
Y ′

]
∼ N

([
0
0

]
,

[
K K ′

K ′> K ′′

])
,

where Y is d-dimensional and Y ′ is d′-dimensional.
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1. (5 pts) Without performing any integration, prove that the marginal density of Y is equal to

p(Y = a) =

∫
p

([
Y
Y ′

]
=

[
a
a′

])
da′ = N (a;µ,K). (6)

2. (5 pts) Define the random variable Z such that[
Y
Z

]
=

[
I 0

−K ′>K−1 I

] [
Y
Y ′

]
.

Prove that Y and Z are independent, and derive the distribution of Z. (If the matrix on the
right hand side seems arbitrary for you, then remind yourself about Gaussian elimination.)

3. (5 pts) Combine the previous two results to show that

p
(
Y ′ = a′ | Y = a

)
= N

(
a′; K ′>K−1a, K ′′ −K ′>K−1K

)
. (7)

(Hint: use the product rule, and the fact that Z is determined by Y and Y ′.)

From the previous results, we have proven the following (remarkable) facts about multivariate
Gaussian random variables:

1. any multivariate Gaussian random variable is a rotation/shift of independent Gaussian ran-
dom variables,

2. affine transformations and linear combinations of Gaussians are Gaussian (Eq. 5),

3. multivariate Gaussian random variables are closed under marginalization (Eq. 6), and

4. multivariate Gaussian conditionals are Gaussian (Eq. 7).
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