
A SCALABLE AND FLEXIBLE FRAMEWORK FOR
GAUSSIAN PROCESSES VIA MATRIX-VECTOR

MULTIPLICATION

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Geoff Pleiss

August 2020

© 2020 Geoff Pleiss

ALL RIGHTS RESERVED

A SCALABLE AND FLEXIBLE FRAMEWORK FOR GAUSSIAN PROCESSES

VIA MATRIX-VECTOR MULTIPLICATION

Geoff Pleiss, Ph.D.

Cornell University 2020

Gaussian processes (GPs) exhibit a classic tension of many machine learning

methods: they possess desirable modelling capabilities yet suffer from im-

portant practical limitations. In many instances, GPs are able to offer well-

calibrated uncertainty estimates, interpretable predictions, and the ability to en-

code prior knowledge. These properties have made them an indispensable tool

for black-box optimization, time series forecasting, and high-risk applications

like health care. Despite these benefits, GPs are typically not applied to datasets

with more than a few thousand data points. This is in part due to an inference

procedure that requires matrix inverses, determinants, and other expensive op-

erations. Moreover, specialty models often require significant implementation

efforts.

This thesis aims to alleviate these practical concerns through a single sim-

ple design decision. Taking inspiration from neural network libraries, we con-

struct GP inference algorithms using only matrix-vector multiplications (MVMs)

and other linear operations. This MVM-based approach simultaneously ad-

dress several of these practical concerns: it reduces asymptotic complexity, ef-

fectively utilizes GPU hardware, and provides straight-forward implementa-

tions for many specialty GP models.

The chapters of this thesis each address a different aspect of Gaussian pro-

cess inference. Chapter 3 introduces a MVM method for training Gaussian

process regression models (i.e. optimizing kernel/likelihood hyperparameters).

This approach unifies several existing methods into a highly-parallel and stable

algorithm. Chapter 4 focuses on making predictions with Gaussian processes. A

memory-efficient cache, which can be computed through MVMs, significantly

reduces the computation of predictive distributions. Chapter 5 introduces a

multi-purpose MVM algorithm that can be used to draw samples from GP pos-

teriors and perform approximate Gaussian process inference. All three of these

methods offer speedups ranging from 4× to 40×. Importantly, applying any of

these algorithms to specialty models (e.g. multitask GPs and scalable approx-

imations) simply requires a matrix-vector multiplication routine that exploits

covariance structure afforded by the model.

The MVM methods from this thesis form the building blocks of the

GPyTorch library, an open-sourced GP implementation designed for scalability

and simple implementations. In the final chapter, we evaluate GPyTorch models

on several large-scale regression datasets. Using the proposed MVM methods,

we can apply exact Gaussian processes to datasets that are 2 orders of magnitude

larger than what has previously been reported—up to 1 million data points.

http://github.com/cornellius-gp/gpytorch

BIOGRAPHICAL SKETCH

Geoff Pleiss was born and raised in the Bay Area. He graduated from Olin Col-

lege of Engineering in 2013 with a self-designed engineering degree, specializ-

ing in applied math and computing. After a brief stint as a software developer

and consultant at Pivotal Labs in New York City, Geoff moved to Ithaca where

he began his PhD work. At Cornell, Geoff studied machine learning under the

advising of Kilian Q. Weinberger. During his PhD, Geoff worked at both Mi-

crosoft Research and ASAPP Inc. as a research intern. He is currently a post-

doctoral researcher at Columbia University, working with John Cunningham.

iii

This thesis is dedicated to my parents, Mike and Chris Pleiss, who have always

been my role models in science. I cannot thank you enough for all of your love,

encouragement, and support over the years.

(P.S. – Dad, hopefully this thesis convinces you that I’m not working on the same

problems that you did back when you were a grad student.)

iv

ACKNOWLEDGEMENTS

This thesis would not have been possible without the support of so many peo-

ple. I would like to begin by thanking my advisor, Kilian Weinberger, who

encouraged myself and Jake Gardner to go down this crazy Gaussian process

rabbit hole. I am constantly humbled by Kilian’s briliance and ability to synthe-

size many sub-areas of machine learning, while always finding simple and ele-

gant solutions to research problems. Beyond his sound scientific advice, Kilian

always offered much-needed support during the most challenging and frustrat-

ing moments of my PhD. Thank you for always being an inspiring mentor, a

patient teacher, and a “funny guy.”

I have been truly fortunate to work with many amazing collaborators. An-

drew Gordon Wilson was a guiding force for much of my PhD research, and it

was amazing to learn from his deep knowledge of Bayesian methods. Thank

you for your encouragement and for the many thoughtful discussions about all

things machine learning. To Karthik Sridharan, who always has remarkable in-

sights no matter what the topic is. To Anil Damel and David Bindel, who have

taught me much about scientific computing, and who I can trust to call me out

when I say something wrong about numerics. To Martin Jankowiak and David

Eriksson, who—in addition to their brilliance—have been tremendous fun to

work with. (Thanks also for putting up with my coding/math errors.)

Jake Gardner has been an invaluable mentor and a trusty partner-in-crime

for the research in this thesis. He introduced me to much of what I know about

Gaussian processes and numerical linear algebra, and was very patient while

I struggled through many of the harder concepts. The genesis of much of this

research came from a summer where Jake and I decided to write our own Gaus-

sian process library. Though Jake was the more senior student, our collaboration

v

back then (and now) felt like an equal partnership. It has been a true joy work-

ing with him, watching our small implementation blossom into several research

projects. I look forward to continuing our work together.

The research presented in this thesis has been implemented as an open-

source Gaussian process library called GPyTorch. I would like to thank so many

wonderful contributors who have helped with the library’s development and

research. To Max Balandat, who has contributed more than anyone else (and

who has taught me how to be a better Python developer). To Eytan Bakshi, who

has facilitated a wonderful collaboration and helped expand the applicability of

our work. To Ke Alex Wang, who is always there to help out with a pull request

or an issue or a last minute NeurIPS sprint.

It has been a pleasure to be part of Kilian’s extended lab group. To Felix Wu,

for his never-give-up attitude; Chuan Guo, for his devotion to rigor; Yu Sun,

for his jovial spirit; Gao Huang, for his amazing insightfulness; Matt Kusner,

for his positivity and encouragement; Stephen Tyree, for our fun and effortless

collaborations; Harry Chao, for our always stimulating conversations; Ruihan

Wu, for her stellar mathematical abilities; Yan Wang, for his “surprisingly sim-

ple” solutions; Yurong You, for his computer vision wizardry; Tianyi Zhang, for

his magical ability to balance 10 projects at once; and Varsha Kishore, for her

willingness to join me on my crazy ideas.

Thank you to the Cornell computer science department, which is a support-

ive and thriving community. To Robert Kleinberg, for being a wonderful and

carrying director of graduate studies. To Becky Stewart, who tirelessly fights

for all PhD students and always responds promptly to my stressed-out emails.

My final thank you goes to Andrea Bruns, who’s love and consistent support

has made it possible for me to cross the finish line.

vi

TABLE OF CONTENTS

Biographical Sketch . iii
Dedication . iv
Acknowledgements . v
Table of Contents . vii
List of Tables . x
List of Figures . xi
List of Algorithms . xii

1 Introduction 1
1.1 The Predictive Power of Gaussian Processes Models 3
1.2 Practical Concerns with Gaussian Processes Models 5

1.2.1 Computational Complexity and Memory Requirements . 5
1.2.2 Use of Modern Compute Hardware 5
1.2.3 Choosing Appropriate Approximations 6
1.2.4 Implementation and Programmability 7

1.3 Outline of Contributions . 8

2 Background 11
2.1 Gaussian Process Regression . 11

2.1.1 Gaussian Process Distributions 12
2.1.2 Gaussian Process Regression Models 13
2.1.3 Training Gaussian Process Models 15
2.1.4 Common Covariance Functions 16
2.1.5 Scalable Gaussian Processes 21
2.1.6 Kernel Interpolation for Scalable Structured Gaussian Pro-

cesses (KISS-GP) . 23
2.1.7 Stochastic Variational Inference for Non-Conjugate/Large-

Scale GPs . 25
2.1.8 Summary of Notation . 28

2.2 The Cholesky Factorization and its Pivoted Variant 30
2.2.1 The Cholesky Factorization 30
2.2.2 An Iterative View of the Cholesky Factorization 31
2.2.3 The Partial Pivoted Cholesky Factorization 32

2.3 Matrix-Vector Multiplication (MVM) Algorithms for Computing
Linear Solves and Other Matrix Functions 35
2.3.1 Linear Conjugate Gradients 37
2.3.2 Lanczos Tridiagonalization 42
2.3.3 Connection between CG and Lanczos 47
2.3.4 MINRES . 48

vii

3 Gaussian Process Training via Black-Box Matrix × Matrix Inference 52
3.1 Introduction . 52
3.2 Gaussian Process Training Through Matrix Multiplication 55

3.2.1 Modified Batched Conjugate Gradients (mBCG) 57
3.2.2 Runtime and Space . 62

3.3 Preconditioning . 63
3.3.1 Modifying mBCG for Preconditioning 63
3.3.2 The Partial Pivoted Cholesky Preconditioner for mBCG . . 65

3.4 Programmability with BBMM . 69
3.4.1 GPyTorch’s LazyTensor Construct 70
3.4.2 Examples of LazyTensors and Specialty GP Models . . . 72
3.4.3 LazyTensors and Pivoted Cholesky Preconditioning . . 76

3.5 Results . 77
3.6 Discussion . 82

4 Gaussian Process Predictions via Lanczos Variance Estimates 84
4.1 Introduction . 84
4.2 Motivation . 86

4.2.1 Computing Predictive Means 86
4.2.2 Computing (Co)-Variances without Pre-Computation . . . 87

4.3 LanczOs Variance Estimates (LOVE) 88
4.3.1 Programmability . 91

4.4 LOVE with KISS-GP . 91
4.4.1 Constant-Time (Co)-Variances with KISS-GP + LOVE . . . 92
4.4.2 Predictive Distribution Sampling with LOVE + KISS-GP . 93
4.4.3 Extension to Additive KISS-GP Kernel Compositions . . . 95

4.5 Results . 96
4.5.1 Predictive Variances . 96
4.5.2 Sampling . 100

4.6 Discussion . 103

5 Variational Gaussian Processes Inference and Bayesian Optimization
via Contour Integral Quadrature 106
5.1 Introduction . 106
5.2 Contour Integral Quadrature (CIQ) via Matrix-Vector Multiplica-

tion . 108
5.2.1 An Efficient Matrix-Vector Multiplication Approach to

CIQ with msMINRES . 109
5.2.2 Computational Complexity and Convergence Analysis of

msMINRES-CIQ . 111
5.2.3 Efficient Vector-Jacobi Products for Backpropagation . . . 114
5.2.4 Preconditioning . 115
5.2.5 Related Work . 117

5.3 Benchmarking msMINRES-CIQ . 118

viii

5.4 Applications . 122
5.4.1 Whitened Stochastic Variational Gaussian Processes 122
5.4.2 Posterior Sampling for Bayesian Optimization 128

5.5 Discussion . 131

6 Scaling Exact Gaussian Processes to Millions of Data Points 133
6.1 Introduction . 133
6.2 Adapting BBMM and LOVE to Large-Scale Exact GPs 135

6.2.1 Reducing Memory Requiremnts to O(N) 136
6.2.2 Practical Considerations . 138

6.3 Results . 139
6.4 Ablation Studies . 145
6.5 Discussion . 148

7 Conclusion and Future Directions 150
7.1 Beyond Matrix-Vector Multiplication 151
7.2 Beyond Gaussian Processes . 152

A Convergence Analysis of Preconditioned mBCG 153
A.1 Proof of Theorems in Section 3.3.2 153

A.1.1 Proof of Lemma 3.1 . 153
A.1.2 Proof of Theorem 3.1 . 155
A.1.3 Proof of Theorem 3.2 . 156

A.2 Applying Theorems 3.1 and 3.2 to Univariate RBF Kernels 156

B Details on msMINRES-Contour Integral Quadrature 158
B.1 Selecting Quadrature Locations and Weights 158

B.1.1 A Specific Quadrature Formula for f(K) = K−1/2 159
B.1.2 Estimating the Minimum and Maximum Eigenvalues . . . 161
B.1.3 The Complete Quadrature Algorithm 162

B.2 Proof of Theorem 5.1 . 163

C Details on Natural Gradient Descent with CIQ-Based SVGP 170
C.1 The Expected Log Likelihood and its Gradient 171
C.2 The KL Divergence and its Gradient 173

D Full GPyTorch Code Examples 175
D.1 Standard GP Regression . 175
D.2 Multitask GP Regression . 178

Bibliography 180

ix

LIST OF TABLES

2.1 Summary of Gaussian process notation. 29

4.1 Asymptotic complexities of predictive (co)-variances with LOVE
versus other methods. 90

4.2 Asymptotic complexities of posterior sampling with LOVE +
KISS-GP versus other methods. 91

4.3 Speedup and accuracy of LOVE + KISS-GP for predictive vari-
ances. 98

4.4 Accuracy and computation time of drawing samples from the
posterior distribution. 101

6.1 Performance of exact GPs and scalable approximations on large
UCI datasets. 141

6.2 Wall-clock time of exact GPs versus approximate GPs. 143

x

LIST OF FIGURES

3.1 Speedup of GPU-accelerated GP training. 78
3.2 Predictive error comparison of mBCG versus Cholesky. 79
3.3 Solve error of mBCG versus Cholesky. 80
3.4 Effect of partial pivoted Cholesky preconditioning on mBCG

solve errors. 81

4.1 Comparison of LOVE predictive variances versus exact predic-
tive variances on airline passenger extrapolation. 97

4.2 LOVE variance error as a function of Lanczos iterations. 100
4.3 Comparison of LOVE versus Random Fourier Features for

Bayesian optimization via max-value entropy search. 103

5.1 Relative error of msMINRES-CIQ as a function of number of
quadrature points Q. 119

5.2 Relative error of randomized SVD as a function of rank R. . . . 120
5.3 Empirical covariance error of various sampling methods

(Cholesky, msMINRES-CIQ, and Random Fourier Features). . . 120
5.4 Effect of preconditioning msMINRES-CIQ. 121
5.5 Speedup of msMINRES-CIQ over Cholesky. 121
5.6 Negative log likelihood (NLL) of Cholesky versus msMINRES-

CIQ SVGP models. 126
5.7 Error of Cholesky versus msMINRES-CIQ SVGP models. 126
5.8 Hyperparameters of Cholesky and CIQ SVGP models. 127
5.9 Comparison of msMINRES-CIQ versus other sampling methods

for Bayesian optimization via Thompson Sampling. 129

6.1 Speed of BBMM training using multi-GPU computation. 144
6.2 Effect of pre-training-based initialization on GP accuracy and

timing. 145
6.3 Effect of subsampling on exact GP performance. 146
6.4 Error of approximate GP models as a function of inducing points. 147

D.1 Output plot from GPyTorch code example for standard GPs. . . 177
D.2 Output plot from GPyTorch code example for multitask GPs. . . 180

xi

LIST OF ALGORITHMS

2.1 Partial (rank-R) pivoted Cholesky decomposition. 34

2.2 Standard conjugate gradients (CG). 39

2.3 Preconditioned conjugate gradients (PCG). 42

2.4 Lanczos tridiagonalization. 44

2.5 Method of minimum residuals (MINRES). 51

3.1 Modified batch conjugate gradients (mBCG). 60

4.1 LanczOs Variance Estimates (LOVE). 89

4.2 LanczOs Variance Estimates (LOVE) + KISS-GP. 92

5.1 Multi-shift MINRES (msMINRES). 112

5.2 MVM-based Contour Integral Quadrature (CIQ). 113

B.1 Computing wq and tq for Contour Integral Quadrature. 163

xii

CHAPTER 1

INTRODUCTION

The past decade has witnessed a wide-scale adoption of machine learning

methods across numerous application domains. This surge is due to the conflu-

ence of several factors, of which we will highlight two. First, researchers have

demonstrated the unparalleled predictive capabilities of several machine learn-

ing algorithms. At the same time, the community has developed algorithms that

are increasingly practical and easy-to-use. Many models can be trained rapidly

on consumer-level computer hardware [Howard, 2018], and high-quality soft-

ware frameworks enable practitioners to rapidly develop new models. While

machine learning’s predictive successes have opened up new possibilities, its

new-found ease-of-use has accelerated innovation and adoption.

Arguably, the machine learning algorithms which have had the broadest im-

pact are the ones that seamlessly offer both predictive power and practicality.

Deep neural networks perhaps best exemplify this trend. Recent innovations in

network architecture [e.g. He et al., 2016, Vaswani et al., 2017, Devlin et al., 2019,

Huang et al., 2019], optimization [e.g. Ioffe and Szegedy, 2015, Izmailov et al.,

2018b], and theoretical understanding [e.g. Keskar et al., 2017, Jacot et al., 2018,

Arora et al., 2019] have led to massive performance improvements on increas-

ingly complex datasets. Moreover, these innovations have been complemented

by the effective use of specialty compute hardware (such as GPUs and TPUs),

the introduction of automatic differentiation [e.g. Paszke et al., 2017], and the

development of several high-quality software implementations [e.g. Jia et al.,

2014, Abadi et al., 2016, Paszke et al., 2019]. These pragmatic advances make it

easy for practitioners to experiment with new models and architectures, which

1

has undoubtedly contributed to its profound and wide-spread successes [Good-

fellow et al., 2016].

Gradient-boosted trees have a similar powerful-yet-practical story. Since

their inception [Friedman, 2001, 2002], gradient boosted trees have excelled

in many applications [e.g. Richardson et al., 2007, Burges, 2010]. The predic-

tive power of these models is a product of several key attributes: for example,

their remarkable generalization properties [Freund and Schapire, 1997, Schapire

and Freund, 2013] and their ability to handle incomplete features [Friedman,

2001]. Equally important, these models are simple and computational efficient,

in large part due to specialty parallel algorithms [e.g. Tyree et al., 2011, Ke et al.,

2017] and easy-to-use software implementations such as XGBoost [Chen and

Guestrin, 2016]. These advantages have made gradient-boosted decision trees

a workhorse algorithm for many practitioners across application domains. Ac-

cording to a survey collected by Kaggle [2019], 75% of the responding data sci-

entists regularly use gradient-boosted decision trees and the XGBoost software.

Nevertheless, for many machine learning algorithms there is still a trade-off

between predictive potential and practical limitations. The focus of this the-

sis is Gaussian process models (GPs), which perhaps best exemplify this ten-

sion. Within the machine learning community, GPs have been well-regarded as

a powerful model class with many desirable properties—such as calibrated un-

certainty estimates and interpretable model priors. Recent work on hierarchical

modelling [e.g. Damianou and Lawrence, 2013] and scalability [e.g. Wilson and

Nickisch, 2015] have furthered their applicability to increasingly complex tasks.

However, Gaussian processes have historically been relegated to small datasets,

and the tools most commonly used for inference do not effectively utilize mod-

2

ern compute hardware. Using GPs requires significant implementation effort,

as simple modifications like an additional output dimension might require dif-

ferent learning/inference procedures. These practical considerations hinder the

adoption of GPs, while also limiting researchers’ abilities to rapidly-prototype

and make new developments. This thesis aims to address these limitations so

that Gaussian processes can be powerful-and-practical models.

1.1 The Predictive Power of Gaussian Processes Models

Before addressing these issues, it is worth discussing why Gaussian processes

are an invaluable model class for blackbox optimization [e.g. Snoek et al., 2012],

robotics [e.g. Deisenroth and Rasmussen, 2011], health care [e.g. Schulam and

Saria, 2015], and many other domains:

(1) Closed-form marginalization over hypotheses. Many machine learning

algorithms (such as neural networks) construct a single model by optimiz-

ing over thousands or millions of parameters. Gaussian processes on the

other hand marginalize over all possible predictive models f(·):

pGP(y | x) =

∫
f(·)

p(y | x, f(·)) p(f(·)) df(·).

As a result, the predictions are less prone to overfitting [Rasmussen and

Williams, 2006].

(2) Well-calibrated uncertainty estimates. The output of a Gaussian process

is a predictive distribution, which incorporates both modelling uncertainty

(e.g. how many different models could fit the data) and data uncertainty

(e.g. how noisy are the training data). Consequentially, the predictive

uncertainties tend to be very well calibrated to the data distribution.

3

(3) A flexible language for encoding prior knowledge. A Gaussian process’

generalization capabilities are almost entirely determined by its modelling

priors. Crucially, GP priors directly encode functional properties—such as

smoothness, periodicity, or monotonicity—rather than beliefs about cer-

tain parameters. These functional properties are determined by the choice

of kernel function (see Section 2.1.4). With the appropriate choice of prior,

it is possible to generalize on datasets with as few as 10 observations [e.g.

Rasmussen and Williams, 2006, Gardner et al., 2017].

(4) Interpretable predictions. The predictions from Gaussian processes (see

Eqs. (2.4) and (2.5)) are not only expressive and powerful; they are also in-

tuitive. If we view the GP’s kernel function as a similarity/distance mea-

sure between two points, then the prediction at a given point x is simply

an interpolation of nearby training points. The prediction’s confidence in-

terval is small when x is close to training points, and large when x is too

far away for accurate interpolation.

These benefits are obviously applicable in the “small data” regime, where pri-

ors and marginalization are critical for meaningful predictive performance [Ras-

mussen and Ghahramani, 2001]. However, these properties also are beneficial

for large datasets. Good uncertainty estimates and interpretable predictions

are increasingly desirable for large-scale machine learning models. In addition,

large datasets make it possible to use powerful families of covariance functions

[Wilson and Adams, 2013, Wilson et al., 2016a, Benton et al., 2019] or hierarchical

(“deep”) GP models [Damianou and Lawrence, 2013, Salimbeni and Deisenroth,

2017, Jankowiak et al., 2020a].

4

1.2 Practical Concerns with Gaussian Processes Models

While Gaussian processes offer great predictive potential, there are several prac-

tical issues that hinder its use, especially on larger and more complex datasets.

1.2.1 Computational Complexity and Memory Requirements

Given N training data points, Gaussian process models naı̈vely require O(N3)

computation and O(N2) storage. This complexity comes from computing a

N ×N covariance matrix of all training data and computing several non-linear

operations (see Section 2.1.2). Historically, this has limited exact Gaussian pro-

cess models to datasets with fewer than 1,000 data points [Hensman et al., 2013].

1.2.2 Use of Modern Compute Hardware

It is worth noting that this O(N3) computational complexity is not necessarily

insurmountable given modern computational hardware. For example, some

deep learning models require many more floating point operations (FLOPs)

than large-scale GPs. A 264-layer DenseNet model [Huang et al., 2017], com-

mon on many computer vision tasks, requires 2.4 × 1018 FLOPs to train on 1.2

million images. Such a model would probably require months to train on stan-

dard CPUs, yet can be trained on 8 GPUs in a matter of hours [Howard, 2018].

Given the effectiveness of GPU acceleration on large neural networks, one

might expect similar performance for large-scale Gaussian processes. Unfortu-

nately, many GP implementations rely on the Cholesky factorization (see Sec-

5

tion 2.1.2), which does not benefit as readily from modern compute hardware.

GPUs are designed for massively-parallelizable operations such as matrix-

multiplication (which is the primary numerical operation of neural networks).

A matrix-multiply between two 1,000 × 1,000 matrices is 10,000 times faster on

a GPU than on a CPU!1 The Cholesky algorithm on the other hand is inher-

ently sequential and affords minimal parallelization; factorizing a 1,000× 1,000

matrix is only 10 times faster on GPU than on CPU. This is why we cannot

expect neural-network-level speedups for Cholesky-based GPs. Moreover, the

Cholesky factorization requires O(N2) storage. This amounts to a terabyte of

memory for N = 1,000,000—well beyond the capacity of most GPU clusters.

1.2.3 Choosing Appropriate Approximations

To reduce the computational and memory burden, researchers have proposed

numerous methods that approximate Gaussian processes with simpler models.

Such models employ low-rank or structured approximations of the N ×N ma-

trices (see Section 2.1.5). Numerous advances have made these approximate

methods more powerful while retaining manageable asymptotic complexities.

However, choosing a suitable approximation involves many design choices.

All approximate methods introduce hyperparameters that control the speed/ac-

curacy trade-off, while also making assumptions that might not be well suited to

certain datasets. For example, variational approaches [e.g. Titsias, 2009, Hens-

man et al., 2013]—which are a popular general-purpose approximation—tend

to overestimate the observational noise, leading to worse predictive uncertain-

1As measured on a NVIDIA GTX 1070 GPU versus an 8-core Intel i7 CPU.

6

ties [Turner and Sahani, 2011, Bauer et al., 2016]. Structured interpolation meth-

ods [Wilson and Nickisch, 2015] alleviate these biases, yet tend to be limited to

low-dimensional problems. While some theoretical guarantees can guide these

design decisions [Burt et al., 2019], choosing a good approximate model is ulti-

mately dataset specific and can require expert knowledge.

1.2.4 Implementation and Programmability

One compelling advantage of neural networks is their modularity. Creating a

novel neural network architecture requires significant thought and experimen-

tation; however, implementing new architectures requires very little software en-

gineering effort. Seemingly complex models like DenseNets [Huang et al., 2017]

and Transformers [Vaswani et al., 2017] have surprisingly simple implementa-

tions using compositional layers. Small modifications, such as adding an addi-

tional output dimension, often require only a single additional line of code.

Gaussian processes on the other hand require significant implementation ef-

fort. Often, the model and the learning/inference procedures are tightly coupled.

As an example, consider a Gaussian process with multiple output dimensions

[Bonilla et al., 2008]. While this model and a standard (single-output) GP are

seemingly similar, they require completely different implementations. The ad-

ditional output dimension changes the structure of the prior covariance ma-

trix (see Section 3.4), modifying the equations used for efficient inference. In

the popular GPy [2012] software package, multi-output GPs and standard GPs

are implemented as separate models, with multi-output GPs requiring an ad-

ditional 100 lines of code. Compared to the one-line change for multi-output

7

neural networks, GPs are significantly more difficult to implement.

1.3 Outline of Contributions

This thesis introduces a framework that addresses these issues without sacrific-

ing the desirable properties of GPs. Our approach is centered on a single critical

design decision: taking inspiration from neural networks, we build GP train-

ing and inference algorithms using only matrix-multiplication and element-wise

operations. As we will demonstrate, this reduces the asymptotic complexity of

GPs, improves their GPU utilization, expands the applicability of exact meth-

ods, and simplifies implementation of specialty models. The following chapters

introduce the components of our matrix-multiplication-based framework:

• In Chapter 3, we introduce the BlackBox Matrix × Matrix (BBMM) ap-

proach for training Gaussian process regression models. BBMM uses a

modified version of preconditioned conjugate gradients (mBCG) that re-

duces GP training to a series of matrix-multiplications. We demonstrate that

this approach effectively uses GPU acceleration and is up to 30× faster

than existing training methods. Additionally, we show that implementing

specialty GP models with BBMM only requires writing an efficient kernel

matrix-multiplication routine.

• Chapter 4 focuses on making predictions with Gaussian processes. We

introduce an algorithm—LancZos Variance Estimates (LOVE)—that effi-

ciently pre-computes many of the terms required for predictions. As with

BBMM training, LOVE relies entirely on matrix-multiplication, which is es-

pecially beneficial for models with fast kernel routines. After a simple pre-

8

computation, computing GP predictions is linear in the amount of training

data, or O(1) time if used in conjunction with the structured kernel inter-

polation method [Wilson and Nickisch, 2015].

• Chapter 5 focuses on Gaussian process models with non-Gaussian likeli-

hood functions—i.e. GPs that are used to model heavy-tailed noise, ar-

rival processes, or classification problems. Unlike with GP regression,

these models necessitate the use of approximate Bayesian inference meth-

ods. We introduce a matrix-multiplication method based on Contour Inte-

gral Quadrature (CIQ) which can be used to optimize a re-parameterized

variational training objective. On several large-scale spatial datasets, this

approach enables faster optimization and higher-fidelity approximations

than existing methods. We also demonstrate that this CIQ method can be

used to efficiently sample from GP posteriors.

• This thesis culminates with Chapter 6, which utilizes the prior chapter’s

methods to scale GP regression to extremely large datasets. Combining

BBMM and LOVE with partitioned matrix-multiplication routines, we

demonstrate that Gaussian processes can be trained without approxima-

tion on datasets with over 1 million data points. GPU-acceleration makes

these large-scale GPs roughly as fast as approximate methods, despite

their larger asymptotic complexity. We perform the first-ever comparison

of exact GPs against scalable approximations on datasets with 106 data

points, showing dramatic performance improvements.

Finally, we package together these contributions into GPyTorch,2 an open-

source implementation of BBMM, LOVE, and CIQ. GPyTorch can be used to

2http://github.com/cornellius-gp/gpytorch

9

http://github.com/cornellius-gp/gpytorch

build small-scale or large-scale GPs with flexible neural-network-like building

blocks. Moreover, the package seamlessly integrates with the PyTorch [Paszke

et al., 2019], Pyro [Bingham et al., 2019], and BoTorch [Balandat et al., 2019] pack-

ages to combine GPs with neural networks, probabilistic models, and blackbox

optimizers. Throughout this thesis, we will discuss how the various algorithms

(BBMM, LOVE, and CIQ) are implemented in GPyTorch, and how a practitioner

can build on top of them to develop novel GP models.

We begin with a brief overview of Gaussian processes, common kernel func-

tions, and scalable GP approximations. Additionally, we introduce Krylov-

subspace methods—a family of numerical algorithms that compute matrix func-

tions through matrix-vector products—which form the foundation of our GP

framework.

10

CHAPTER 2

BACKGROUND

For a majority of this thesis we will assume that we are building predictive

models for supervised regression problems. As a running example, imagine

that we wish to predict a child’s future weight y ∈ R from some features about

the child x ∈ RD—such as the their current weight, their parents’ income level,

etc. We assume that the child’s height y can be explained by 1) some latent

function f(x) of the features and 2) some observational noise ε:

y = f (x) + ε, ε ∼ N
[
0, σ2

obs

]
. (2.1)

In particular, we assume the observational noise follows some Gaussian distri-

bution with variance σ2
obs. This setup is one of the most studied problems in

machine learning, and there are numerous different approaches to tackling this

problem. In this thesis we concern ourselves with the approach of Gaussian

process regression, which is a non-parametric and Bayesian approach. It is

non-parametric because the class of possible functions f(·) is defined directly

through pairs of training data points rather than through some prescribed func-

tional form (e.g. quadratic functions, neural networks, etc.). It is Bayesian be-

cause the choice of f(·) is marginalized out.

2.1 Gaussian Process Regression

In the machine learning literature the term Gaussian process describes two dif-

ferent objects. In one context it refers to a distribution over functions that can

define a prior over f(·). It can also refer the class of predictive models that make

use of Gaussian process priors on f(·). As we will soon see, these two classes of

11

objects are effectively the same. However, for clarity in this section we will ex-

plicitly distinguish when “Gaussian process” is describing a prior distribution

over functions and when it is describing a class of predictive models.

2.1.1 Gaussian Process Distributions

A Gaussian process distribution f(·) ∼ GP extends the multivariate-Gaussian

distribution from finite-dimensional vectors to (infinite-dimensional) functions.

It is defined by a mean function µ(·) and a covariance function or kernel func-

tion k(·, ·).1 Given N data points X = [x(1), . . . ,x(N)] ∈ RN×D, the distribution

over f = [f(x(1)), . . . , f(x(N))] ∈ RN is a multivariate Normal distribution:

p (f) = N [f ;µX,KXX] , (2.2)

where f (i) = f(x(i)), µ(i)
X = µ(x(i)) and K

(i,j)
XX = k(x(i),x(j)). (We will be using the

above short-hand notations f , µX, and KXX throughout the remainder of this

thesis.) The matrix KXX ∈ RN×N is often referred to as the kernel matrix of X.

µ(·) can be any real-valued function, though it is common simply to choose

the zero-function (i.e. µ(·) = 0). The covariance function k(·, ·) must be a valid

kernel function, which means that the kernel matrix K must be positive definite.

See Section 2.1.4 for common choices of k(·, ·).

1Throughout this thesis we will use the two terms interchangeably.

12

2.1.2 Gaussian Process Regression Models

Recall our high-level regression model from Eq. (2.1): y = f (x) + ε. Gaussian

process regression models are a class of predictive models where

(1) f(·) is modelled by a Gaussian process prior: f(·) ∼ GP [µ(·), k(·, ·)], and

(2) ε is modelled by a Gaussian noise distribution: ε ∼ N [0, σ2
obs].

Together, these two items define the prior distribution and the likelihood, re-

spectively. To make predictions on previously-unseen test points x∗, y∗ (e.g.

predict the future weight of a child), we condition the prior model on a set of

previously-seen training data X,y (e.g. the weights/features of other children).

In total the predictive model is fully defined by:

(1) the mean function µ(·) and covariance function k(·, ·) of the GP prior,

(2) the amount of observational noise σ2
obs, and

(3) training data Dtrain = (X,y).

Note that the only learnable parameters of this model are σ2
obs and whatever

parameters are required by the mean/covariance functions.

The predictive distribution. In many supervised regression paradigms (e.g.

neural networks, ridge regression, etc.), it is common to learn a single la-

tent function f ∗(·) that best fits the training data Dtrain. Under such a setup,

the predictive distribution for a test point (x∗, y∗) is given by p(y∗|f ∗(x∗)) =

N [y∗; f ∗(x∗), σ2
obs].However, Gaussian process regression models marginalize out

13

the choice of f(·). Under this setup, the predictive distribution is given by:

p (y∗ | x∗,Dtrain) =

∫
f(·)

p (y | f(x∗)) p (f(x∗) | x∗,Dtrain) df(·).

This predictive distribution happens to be computable in closed form. Given

the Gaussian process prior on f(·) and the Gaussian noise observation model

for p(y∗|f(x∗)), the prediction p(y∗|x∗,Dtrain) is a Gaussian distribution:

p (y∗ | x∗,Dtrain) = N [y∗;µ∗ (x∗) ,Var∗ (x∗)] (2.3)

where µ∗ (·) and Var∗ (·) are given by:

µ∗ (x∗) = µ (x∗) + k>Xx∗

(
KXX + σ2

obsI
)−1

(y − µ) (2.4)

Var∗ (x∗) = k(x∗,x∗) + σ2
obs − k>Xx∗

(
KXX + σ2

obsI
)−1

kXx∗ . (2.5)

Here the shorthand kXx∗ ∈ RN is the vector of covariances between test point x∗

and all training points X = [x(1), . . . ,x(N)]. Note that, under Eqs. (2.4) and (2.5),

the Gaussian process’ prediction depends on (1) the labels of the training data

(2) the similarities between x∗ and other training data (as determined by their

prior covariances kXx∗).

Short derivation of the predictive distribution. To understand where

Eq. (2.4) and Eq. (2.5) come from, we start by writing the joint prior distribu-

tion p[f , f(x∗)]. Under the Gaussian process prior of f(·) and Eq. (2.2), this joint

distribution will be a multivariate-Gaussian.

p


 f

f(x∗)


∣∣∣∣∣∣∣
X

x∗


 = N


 f

f(x∗)

 ;

 µ

µ(x∗)

 ,
KXX kXx∗

k>Xx∗ k(x∗,x∗)


 .

We then compute the joint marginal likelihood p([y, y∗] | [X,x∗]) by integrat-

ing out the dependence on p([f , f(x∗)]). Under the Gaussian noise observation

14

model of Eq. (2.1), it happens that the marginal likelihood is also multivariate

Gaussian and can be computed in closed form.

p


y

y∗


∣∣∣∣∣∣∣
X

x∗


 =

∫
p


y

y∗


∣∣∣∣∣∣∣
 f

f(x∗)


 p


 f

f(x∗)


∣∣∣∣∣∣∣
X

x∗


 d

 f

f(x∗)


= N


y

y∗

 ;

 µ

µ(x∗)

 ,
KXX + σ2

obsI kXx∗

k>Xx∗ k(x∗,x∗) + σ2
obs


 .

where the σ2
obs terms come from the observational noise (which we assume

is independent for all data points). Therefore, the predictive distribution

p(y∗ | x∗,Dtrain) is simply the conditional of a multivariate Gaussian. Apply-

ing standard Gaussian conditioning rules [see e.g. Bishop, 2006, Rasmussen and

Williams, 2006] results in Eq. (2.4) and Eq. (2.5).

Predictions on multiple test points. If there are multiple test points x∗, x∗′

of interest, the predictions p([y∗, y∗′] | [x∗,x∗′],Dtrain) are jointly Gaussian dis-

tributed. The mean is given by Eq. (2.4) and the covariance between the two

points is given as

Cov∗ (x∗,x∗′) = k(x∗,x∗′)− k>Xx∗(KXX + σ2
obsI)−1kXx∗′ .

In fact, any (finite) set of test points will be jointly Gaussian with the above

covariance. Recalling our definition from Section 2.1.1, this implies that the

predictive distribution is a Gaussian process distribution.

2.1.3 Training Gaussian Process Models

Gaussian process regression models are non-parametric, which leaves us few

terms that need to be learned. However, we wish to pick the mean func-

15

tion, kernel function, and observational noise that best fit our training data

Dtrain = (X,y). Let θ be the set of learnable hyperparameters of these func-

tions. For example, θ might include the lengthscale ` and outputscale o2 of the

kernel function (see Section 2.1.4) as well as the observational noise parameter

σobs of the likelihood. In more complex Gaussian process models, θ may also in-

clude inducing point locations [Titsias, 2009] or neural network parameters for

deep kernel learning [Wilson et al., 2016a]. We can measure the fit of these pa-

rameters through the marginal log likelihood of the Gaussian process applied

to the training data X,y:

− log p(y | X,θ) = − logN
[
y;µ, K̂XX

]
∝ log

∣∣∣K̂XX

∣∣∣+ (y − µ)>K̂−1
XX(y − µ), (2.6)

where K̂XX is shorthand for the training kernel matrix with added observa-

tional noise: K̂XX = KXX + σ2
obsI. Note that the dependence on θ is implicitly

absorbed into µ and K̂XX. We can use Eq. (2.6) to learn the parameters θ via

gradient-based optimization or sampling. Its derivative is given by

∂ − log p(y | X,θ)

∂θ
∝ Tr

(
K̂−1

XX

∂K̂XX

∂θ

)
− (y − µ)>K̂−1

XX

∂K̂XX

∂θ
K̂−1

XX(y − µ).

(2.7)

We will discuss how to efficiently compute these terms in Chapter 3.

2.1.4 Common Covariance Functions

Of the three objects that define a Gaussian process regression model—the

prior mean function, the prior covariance function, and the observed noise

parameter—the covariance function arguably has the largest impact on the pre-

dictive distribution. While the parameters of any particular kernel function

16

can most often be learned through gradient descent, the practitioner must first

choose the class of covariance functions to optimize over. Choosing the right

covariance function class will largely determine how the Gaussian process re-

gression model generalizes to unseen data points. This is especially crucial in

the small-data regime: if the covariance function properly encodes prior infor-

mation, then the model can generalize well even when there are few training

points.

In the running example of predicting a child’s weight, there are several

known functional properties that we can encode a priori. For example, a child’s

weight will (in many cases) be roughly monotonic with respect to time. Addi-

tionally, children who grow up in similar household settings will be more likely

to have similar weights. We will discuss how both of these properties can be

encoded by choosing an appropriate kernel function.

Common kernel functions. Here we list some common and simple kernel

functions that will be used throughout this thesis. We will describe their func-

tional form and their properties:

• The Radial Basis Function (RBF) kernel, or squared exponential kernel is

one of the most commonly-used covariance functions. It’s functional form

is given by

kRBF(x,x′) = o2 exp

(
D∑
d=1

(
x(d) − x(d)′)2

`2
d

)
where o2 is referred to as the outputscale parameter and the `1, . . . , `D are

the lengthscales for each dimension d ∈ [1, D]. When the `d parameters

differ across all dimensions, the kernel is referred to as the RBF-ARD ker-

nel, where ARD stands for automatic relevance determination .

17

The RBF kernel is commonly considered to be a “general” kernel, since it is

able to universally approximate any function given enough training data

[Micchelli et al., 2006]. However, functions drawn from f ∼ GP [µ, kRBF]

are infinitely differentiable, which may impose an unreasonable smooth-

ness constraint in some applications [Stein, 2012].

• The Matérn kernel is another popular kernel which is arguably as general

as the RBF kernel yet without the strict smoothness properties. The kernel

introduces a parameter ν that determines how differentiable its sampled

functions are. More concretely, the covariance between any two points is

given as:

k
(ν)
Mat(x,x

′) = o2 21−ν

γ(ν)

(
√

2ν
D∑
d=1

|x(d) − x(d)′|
`d

)ν

Kν

(
√

2ν
D∑
d=1

|x(d) − x(d)′|
`d

)
,

where o2 and `d are analogous to the parameters from the RBF kernel, and

where Kν is a modified Bessel function [Rasmussen and Williams, 2006].

Functions sampled from f ∼ GP
[
µ, k

(ν)
mat

]
are dνe − 1-times differentiable.

As ν →∞we recover the RBF kernel.

Typically, o2 and `d are learned through gradient descent whereas ν is pre-

selected and fixed. Common values for ν are 3/2 and 5/2, both of which

have more succinct closed-form expressions. These kernels are often re-

ferred to as Matérn-3/2 and Matérn-5/2, respectively.

• The Linear kernel is one of the least expressive kernels, as it only has sup-

port for linear functions. However, it is commonly used as a building

block for more complex kernels, as we will discuss shortly. It is given by:

kLin(x,x′) = b2 + o2(x− c)>(x− c),

where b, c, and o are learnable parameters.

18

There are many other kernels that can encode other functional structures such

as periodicity (using the periodic kernel), multiple lengthscales (using the ra-

tional quadratic kernel), or erratic/noisy dynamics (using Ornstein-Uhlenbeck

kernel). See [Rasmussen and Williams, 2006] for more discussion on basic kernel

types.

Composing kernels. Kernels can be composed together to combine functional

properties. The two most common methods for composition are addition:

k(x,x′) = k1(x,x′) + k2(x,x′) and multiplication: k(x,x′) = k1(x,x′)k2(x,x′).

The sub-kernels k1 and k2 can operate on any subset of the dimensions of x. In

our running example, we may wish to model our data with the kernel

k(x,x′) = kLin(xtime,x
′
time)kRBF(xtime,x

′
time) + kRBF(xhousehold,x

′
household)

where xtime and xhousehold are the time and household features of x respectively.

This would encode our first prior assumption (a child’s weight increases near-

monotonically with time, but is not strictly linear) and our second prior assump-

tion (children from a similar household environments should have similar de-

velopment).

Stationary kernels. The RBF and Matérn kernels belong to an important class

of kernels known as stationary kernels. This class more generally includes all

kernels that can be written as function of the difference between two points:

kstationary(x,x′) = g(|x− x′|), (2.8)

19

for some function g.2 This class of kernels has many important properties; see

[e.g. Rasmussen and Williams, 2006, Wilson and Adams, 2013] for more de-

tails. For the purpose of this thesis, we draw attention to stationary kernels

as they allow for potential computational savings. For example, the computa-

tional complexity of GPs with stationary kernels is reduced when the data lie

on a regularly-spaced grid [Cunningham et al., 2008, Saatçi, 2012] or can be ap-

proximated by grid points [Wilson, 2014, Wilson and Nickisch, 2015].

Spectral and Deep kernels. With complex datasets, it may be too difficult to

manually encode a specific functional structure. In such settings, it is better to

automatically learn functional structure directly from the data using a highly-

parametric kernel, such as the spectral-mixture kernel [Wilson and Adams,

2013] or a deep kernel [Wilson et al., 2016a]. At a high level, these kernels learn

the g function in Eq. (2.8) using a mixture model or a neural network.

The spectral-mixture kernel (in one dimension) is defined by a mixture of Q

functions:

kSM(x, x′) =

Q∑
q=1

wq exp
(
−2π2(x− x′)2vq

)
cos
(
−2π(x− x′)2µq

)
,

where wq, vq, and µq are learnable parameters. It is well-suited for interpolation

and extrapolation tasks of time series or spatial data [Wilson and Adams, 2013].

Deep kernels [Wilson et al., 2016a,b, Calandra et al., 2016] are kernels where the

inputs x, x′ are first transformed using a deep neural network Φ:

kdeep(x, x′) = kbase (Φ(x),Φ(x′)) ,

2Note that the linear kernel cannot be written in this way and is therefore non-stationary.

20

where kbase(·, ·) is a simpler base kernel (usually the RBF kernel). For both cases,

the parameters of the mixture model/neural network are learned by optimizing

the marginal log likelihood in Eq. (2.6).

2.1.5 Scalable Gaussian Processes

As we will discuss in detail in the next chapters, computing the marginal log

likelihood (Eq. (2.6)) and the predictive distribution (Eqs. (2.4) and (2.5)) has his-

torically been computationally prohibitive for large datasets. This motivates the

development of several approximate Gaussian process models [e.g. Quiñonero-

Candela and Rasmussen, 2005, Snelson and Ghahramani, 2006, Rahimi and

Recht, 2008, Titsias, 2009, Hensman et al., 2013, Wilson and Nickisch, 2015, Iz-

mailov et al., 2018a, Gardner et al., 2018b, Evans and Nair, 2018] that trade off

exactness for computational scalability. Many of these methods approximate

the training kernel matrix KXX with a structured or low-rank matrix K̃XX that

affords faster matrix operations and requires less storage. Here we highlight

some notable variants, though it is by no means an exhaustive list—see [Liu

et al., 2020] for a more thorough review.

Inducing Points. A common mechanism for scalable models is to introduce

a set of pseudo-inputs, or inducing points. The kernel function for (non-

inducing) inputs x, x′ is approximated by interpolating against the kernel ma-

trix for the pseudo-inputs Z = [z(1), . . . , z(M)].

k(x,x′) ≈ k̃(x,x′) =

interpolation(
k>ZxK

−1
ZZ

)
KZZ

interpolation(
K−1

ZZkZx′
)

= k>ZxK
−1
ZZkZx′ . (2.9)

21

In its simplest form, it is common to choose M � N inducing points. The ap-

proximate training kernel matrix K̃XX ≈ KXZK−1
ZZKZX will then have low-rank

structure, allowing for efficient computation of Eqs. (2.4) to (2.7). The locations

of the inducing points Z are additional parameters to optimize via Eq. (2.6) (typ-

ically with gradient descent).

Here we have presented inducing points as a mechanism for approximat-

ing kernel matrices. Under this view, we can use the same training/prediction

equations as presented in Sections 2.1.2 and 2.1.3—replacing the kernel matri-

ces with their corresponding approximations. We do note it is also possible to

motivate/derive inducing point methods in other ways—e.g. through a greedy

approximation [Smola and Bartlett, 2001] or a variational bound [Titsias, 2009,

Hensman et al., 2013]. However, under these interpretations it is less straight-

forward to derive connections to Eqs. (2.4) to (2.7).

Variants. The basic formula of Eq. (2.9) can be extended to create a variety

of approximate Gaussian process regression methods. We briefly present three

common variants here—all of which use M � N inducing points and learn

their locations through gradient descent of Eq. (2.6). In the next section we will

discuss Kernel Interpolation for Scalable Structured GPs (KISS-GP) [Wilson and

Nickisch, 2015]—a variant which utilizes inducing points in a unique way.

• Subset of Regressors (SoR) [Silverman, 1985, Smola and Bartlett, 2001] is

arguably the most standard variant. Here, the kernel matrix KXX and all

kernel vectors kXx∗ are replaced with their approximate variants:

K̃XX ≈ KXZK−1
ZZKZX, k̃Xx∗ ≈ KXZK−1

ZZkXx∗ .

22

• Fully Independent Training Conditional (FITC) [Snelson and Ghahra-

mani, 2006] can be interpreted as an extension of SoR where the approxi-

mate training kernel matrix has a diagonal correction term Λ.

K̃XX ≈ KXZK−1
ZZKZX + Λ, Λ(i,i) = k(x(i),x(i))− k>Zx(i)K

−1
ZZkZx(i) .

The diagonal correction term is motivated through a connection to approx-

imate Bayesian inference.

• Sparse Gaussian Process Regression (SGPR) [Titsias, 2009] uses the same

kernel approximation as SoR. However, when learning the inducing point

locations and other parameters, SGPR augments the marginal log likeli-

hood of Eq. (2.6) with a diagonal correction term:

L(y | X,θ) = − log p(y | X,θ) +
N∑
i=1

(
k(x(i),x(i))− k>Zx(i)K

−1
ZZkZx(i)

)
.

The diagonal correction term can be derived through a connection to vari-

ational methods.

We will discuss how to exploit this low-rank kernel matrix structure for faster

inference in the next chapter.

2.1.6 Kernel Interpolation for Scalable Structured Gaussian

Processes (KISS-GP)

Kernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP) [Wil-

son and Nickisch, 2015] utilizes inducing points in a fundamentally different

way than SoR, FITC, or SGPR. While the above methods tend to use M � N

23

inducing points, Wilson and Nickisch [2015] demonstrate that it is possible to

set M � N by making the following restrictions:

(1) the interpolation terms in Eq. (2.9) are approximated by sparse interpolation

vectors wx ≈ K−1
ZZkZx;

(2) the inducing points Z = [z(1), . . . , z(M)] must lie on a regularly-spaced grid;

and

(3) the kernel function is stationary (e.g. RBF, Matérn, etc.).

The resulting approximate kernel matrix has nice algebraic structure that can

be exploited for efficient storage and fast computations. In particular, the ap-

proximate kernel matrix K̃XX affords fast matrix-vector multiplications (MVMs),

which will translate to fast Gaussian process training and inference (using the

methods described in Chapters 3 and 4).

In more detail, KISS-GP assumes that a data point x is well-approximated as

a local interpolation of Z. Using cubic interpolation [Keys, 1981], x is expressed in

terms of its 4 closest inducing points, and the interpolation weights are captured

in the sparse vector wx. The wx vectors approximate the training kernel matrix

KXX ≈ K̃XX via Eq. (2.9):

K̃XX =

 ≈W>
X

K>ZXK−1
ZZ

KZZ

 ≈WX

K−1
ZZKZX


≈ W>

X KZZ WX. (2.10)

Here, WX = [wx(1) , . . . ,wx(N)] contains the interpolation vectors for all x(i).

Performing a matrix-vector multiplication with K̃XX (i.e. (W>
XKZZWX)b for

any vector b) takes near-linear time. To see why, a MVM with the matrix

24

WX requires O(N) time due to the O(N) sparsity of WX. Moreover, restric-

tions 2 and 3 (stationary kernel/grided inducing points) endow the inducing

kernel matrix KZZ with Toeplitz structure, which can be exploited for O(M)

storage and O(M logM) MVMs [see Wilson et al., 2015, for details]. Thus, if

we perform (W>
XKZZWX)b from right-to-left, the entire multiplication takes

O(N + M logM) time. As we will demonstrate in the next section, exploiting

these fasts MVMs results in a near-linear training time complexity for KISS-GP.

Computing predictive means. One advantage of KISS-GP’s structure is the

ability to perform constant time predictive mean calculations [Wilson et al.,

2015]. Substituting the KISS-GP approximate kernel into Eq. (2.4) and assuming

a prior mean of 0 for notational brevity, the predictive mean is given by

µ∗ (x∗) = w>x∗KZZWX(W>
XKZZWX + σ2

obsI)−1y

a′

. (2.11)

(Here blue highlights computations that don’t depend on test data.) Because

wx∗ is the only term in Eq. (2.11) that depends on x∗, the remainder of the equa-

tion (denoted as a′) can be pre-computed: µ∗ (x∗) = w>x∗a
′. After pre-computing

a′, the multiplication w>x∗a
′ requires O(1) time, as wx∗ is sparse and has only

four nonzero elements.

2.1.7 Stochastic Variational Inference for Non-Conjugate/Large-

Scale GPs

For most of this thesis we will focus on Gaussian process regression with a (con-

jugate) Gaussian observation model—p(y | f(x)) = N [y; f(x), σ2
obs]. Under this

25

setting, exact Bayesian inference is tractable, which results in the closed-form

predictive distribution given by Eqs. (2.4) and (2.5). Here we will briefly exam-

ine the case where exact inference is intractable, which occurs when

(1) using a non-Gaussian observation model (e.g. a Bernioulli likelihood for

GP classification, a Student-T likelihood for heavy-tailed regression); or

(2) using a dataset that is too large (or cumbersome) to fit into memory.

These settings necessitate approximate Bayesian inference methods to estimate the

predictive distribution. Here, we would note a subtle but important distinction

between “approximate inference” and the “scalable approximations” presented

in Section 2.1.5. Scalable GP approximations like KISS-GP perform exact GP in-

ference but approximate the kernel matrix operations.3 Approximate inference

GPs on the other hand approximate the intractable predictive distribution with

a simple (often Gaussian) distribution.

There are several approaches to approximate non-conjugate GP predictive

distributions [Minka, 2001, Rasmussen and Williams, 2006, Hensman et al.,

2015a, Li et al., 2015]. Here we introduce a family of methods that rely on

stochastic variational approximations.

Stochastic variational Gaussian processes (SVGP) [Hensman et al., 2013,

2015b, Matthews et al., 2016] are a popular class of models that approximate GP

3We note that the SGPR method [Titsias, 2009] is in some sense a “hybrid” method. It is mo-
tivated and derived via variational inference, and therefore can be considered an approximate
inference method. However, as demonstrated in Section 2.1.5, it can also be viewed through the
lens of exact GP inference with a SoR approximated kernel. In this thesis we consider it under
the lens of “scalable exact GPs.” We reserve the “approximate inference” label for models that
can handle non-conjugate observation models.

26

posteriors via stochastic variational inference. This method has several com-

pelling properties: (1) it uses M � N inducing points to easily trade off speed

for predictive fidelity; and (2) it can be used in conjunction with stochastic gra-

dient optimization for memory savings.

Similarly to SoR/FITC/SGPR, these models introduce a set of M � N in-

ducing points Z = [z1, . . . , zM]. Let the random variable u = [f(z1, . . . , f(zM)]

represent the function evaluated at each inducing point. SGPR approximates

the joint posterior distribution p(f(·),u, | X,y) with a Gaussian process varia-

tional distribution q(f(·),u):

p(f(·),u | X,y) ≈ q(f(·),u)

= p(f(·) | u)q(u), q(u) = N [m,S] ,

where m ∈ RM and S ∈ RM×M are learnable variational parameters. Under

this approximation, note that the conditional variational distribution q(f(·) | u)

matches the prior conditional distribution. Marginalizing out u gives us the

approximate Gaussian predictive distribution q(f(x)):

q (f(x)) = E
q(u)

[q(f(x),u)] , E
q(u)

[p (f(x) | u)]

= N
[
x∗;µ∗aprx (x) ,Var∗aprx (x)

]
µ∗aprx (x) = k>ZxK

−1
ZZm (2.12)

Var∗aprx (x) = k(x,x)− k>ZxK
−1
ZZ (KZZ − S) K−1

ZZkZx (2.13)

where µ∗aprx (·) and Var∗aprx (·) are the (approximate) posterior mean and co-

variance functions. The parameters m and S (as well as the inducing loca-

tions Z and kernel/likelihood hyperparameters) are optimized to minimize

the KL-divergence between the approximate posterior and the true posterior

p(f(·),u | X,y). This objective function is captured by the evidence-lower

27

bound (ELBO):

−LELBO = −
N∑
i=1

E
q(f(x(i)))

[
log p(y(i) | f(x(i)))

]
+ KL [q(u)‖p(u)] . (2.14)

Here, p(y(i) | f(x(i)) is the (potentially) non-conjugate likelihood function.

The expectation Eq(f(x(i)))

[
log p(y(i) | f(x(i)))

]
can be approximated with Monte

Carlo integration [Wilson et al., 2016b] or with Gauss-Hermite quadrature

[Hensman et al., 2015b]. The KL divergence term is given by

KL [q(u)‖p(u)] =
1

2

(
m>K−1

ZZm + Tr
(
K−1

ZZS
)
− log |K−1

ZZS| −M
)
.

Eq. (2.14) is typically optimized using gradient descent or natural gradient

descent methods [Hensman et al., 2012, Salimbeni et al., 2018b]. Note that, be-

cause the ELBO factorizes as a sum over data points, we can approximate the

sum over a minibatch of data. This ability to use stochastic optimization is an

advantage of SVGP, as it does not require large datasets to be stored in memory.

To form predictions at test time, we simply use Eq. (2.12) and Eq. (2.13) to

compute q(f(x∗)) for a test point x∗. The predictive distribution q(y | x∗) =

Eq(f(x∗)) [p(y∗ | f(x∗))] can again be approximated via sampling or quadrature.

Closed-form predictive distributions q(y∗ | x∗) exist for Gaussian and Bernoulli

observation models [Rasmussen and Williams, 2006].

2.1.8 Summary of Notation

The notation of this section is summarized in Table 2.1. It will be used through-

out the remaining chapters.

28

Table 2.1: Summary of Gaussian process notation.
Notation Domain Description

N Z Number of training data points
D Z Dimensionality of inputs
M Z Number of inducing points

X RN×D Training features
y RN Training targets
x∗ RD Features of a test data point
y∗ R Target of a test data point

µ(·) RD → R The GP (prior) mean function
k(·, ·) RD × RD → R The GP (prior) covariance/kernel function
σ2

obs R Observational variance of the Gaussian likelihood
f(·) RD → R Latent function (modelled with a GP prior)
θ Parameters of kernel, likelihood, etc.

µX RN (Prior) mean vector for training data X
KXX RN×N (Prior) kernel matrix for training data X

K̂XX RN×N (Prior) kernel matrix KXX plus observational noise σ2
obsI

kXx∗ RN Prior covariance between training data X and point x∗

f RN Latent function evaluated on training data X

Z RM×D Locations of inducing points
KZZ RM×M (Prior) kernel matrix for inducing points Z
kZx RM Prior covariance between inducing points Z and point x
WX RN×M Sparse inducing-interpolation matrix for training data X (using Eq. (2.10))
wx RM Sparse inducing-interpolation vector for point x (using Eq. (2.10))

k̃(·, ·) RN × RN → R Approximate kernel function (using Eq. (2.9))
K̃XX RN×N Approximate training kernel matrix (using Eq. (2.9))

µ∗ (·) RD → R Predictive mean function of the GP model
Var∗ (·) RD → R Predictive variance function of the GP model

Cov∗ (·, ·) RD → R Predictive co-variance function of the GP model

29

2.2 The Cholesky Factorization and its Pivoted Variant

The Cholesky factorization decomposes a positive definite matrix K as LL>,

where L is lower triangular. It is typically used to compute matrix solves and

determinants of positive definite matrices. Historically, it has been the primary

numerical tool for GP training and predictions.

In the remaining chapters we will propose alternative numerical tools for

Gaussian processes. However, we introduce the Cholesky algorithm here to

better understand its numerical properties and limitations. Additionally, we

introduce a pivoted version of the Cholesky factorization, which will be used as

a building block for a preconditioner introduced in Section 3.3.

2.2.1 The Cholesky Factorization

The Cholesky decomposition is defined by a recursive algorithm:K(11) K(12)

K(12)> K(22)

 =

 L(11) 0

L(11)−1
K(12) L(22)


L(11)> K(12)>L(11)−>

0 L(22)>

 (2.15)

where L(11) is the Cholesky factor of K(11) and L(22) is the Cholesky factor of the

Schur compliment S2 =
(
K(22) −K(12)>L(11)−>L(11)−1

K(12)
)

. The base case is for

1× 1 matrices: Chol(K) =
√
K.

Runtime and space. The Cholesky algorithm is inherently sequential, requir-

ing N steps to decompose an N × N matrix. Each step i ∈ [1, N] computes the

Schur compliment of a (N − i) × (N − i) matrix, which takes O(i2) time (see

[Golub and Van Loan, 2012, Sec. 4.2] for a complete derivation). Thus in total

30

the factorization takes O(N3) time. Storing the Cholesky factor requires O(N2)

space. It is worth noting that in general these computation and storage require-

ments cannot be improved upon even when K has exploitable structure (e.g.

Toeplitz). Moreover, this sequential nature of the recursive algorithm prevents

it from exploiting the full possibilities of GPU acceleration.

2.2.2 An Iterative View of the Cholesky Factorization

The Cholesky factorization is considered a direct numerical method. In other

words, the recursion defined by Eq. (2.15) is run to completion before comput-

ing any solves/determinants. Any computations performed with the Cholesky

factor L are considered to be “exact” up to numerical round-off errors. Alterna-

tively, we can view the Cholesky decomposition as an iterative method, where

each iteration produces a higher rank approximation to the matrix K. In partic-

ular, if K =
[
K(11), b>; b, K(22)

]
, then L(11) =

√
K(11), L(21) =

(
1/
√
K(11)

)
b,

and the Schur complement is S2 = K(22) −
(
1/K(11)

)
bb>. Therefore:

K =

̂̀
1√K(11)

1√
K(11)

b


̂̀>
1[√

K(11) 1√
K(11)

b>
]

+

0 0

0 S2


, ̂̀1

̂̀>
1 +

0 0

0 S2

 . (2.16)

Running this same procedure on S2 gives us S2 = ̂̀2
̂̀>

2 + [0, 0; 0, S3]:

K = ̂̀1
̂̀>

1 +

 0̂̀
2

[0 ̂̀>
2

]
+

0 0

0 S3



31

After R recursive iterations, defining `i =
[
0; ̂̀i]we obtain

K =
R∑
i=1

`i`
>
i +

0 0

0 SR+1

 , (2.17)

where each `i has exactly i− 1 leading zero (`i = [0, . . . , 0, ̂̀i]). The
∑R

i=1 `i`
>
i

sum of outer product matrices gives us a low-rank approximation to K, with

∥∥∥∥∥K−
R∑
i=1

`i`
>
i

∥∥∥∥∥
2

=

∥∥∥∥∥∥∥
0 0

0 SR+1


∥∥∥∥∥∥∥

2

. (2.18)

After all N iterations the sum of the outer products is exact: K =
∑N

i=1 `i`
>
i .

2.2.3 The Partial Pivoted Cholesky Factorization

To improve the low rank approximation in Eq. (2.17), one natural goal is to

minimize the norm of the Schur complement ‖Si‖ at each iteration. Harbrecht

et al. [2012] suggest a greedy approach, permuting the rows and columns of Si

so that the upper-leftmost entry in Si is the maximum diagonal element. In the

first step (where S1 = K), this amounts to replacing K with Π1KΠ>1 , where

Π1 is a permutation matrix that swaps the first row/column with whichever

row/column corresponds to the maximum diagonal element. Thus:

Π1KΠ>1 = `1`
>
1 +

0 0

0 S̄2

 .
To proceed, one can apply the same pivoting rule to S2 to achieve Π2:

(Π2Π1) K
(
Π>1 Π>2

)
= Π2`1`

>
1 Π>2 + `2`

>
2 +

0 0

0 S̄3

 .

32

In general, after R steps, we obtain:

K =
R∑
i=1

(
i∏

j=1

Πj

)
`i`i

(
i∏

j=1

Π>i−j+1

)
+

0 0

0 S̄R+1

 . (2.19)

Collecting the
(∏i

j=1 Πj

)
`i vectors into a matrix L̄R gives us a rank-R approxi-

mation of K:

K = L̄RL̄>R +

0 0

0 S̄R+1

 ≈ L̄RL̄>R. (2.20)

L̄R ∈ RN×R is referred to as the partial pivoted Cholesky factor of K.

Properties. For matrices with rapidly decaying spectra, the partial pivoted

Cholesky factor is a remarkably effective approximation. Harbrecht et al. [2012]

prove an exponential convergence guarantee for matrices with exponentially-

decaying eigenvalues:

Theorem 2.1 (Partial Pivoted Cholesky Convergence [Harbrecht et al., 2012]). If

the first R eigenvalues λ1, . . ., λR of a positive-definite K ∈ RN×N satisfy (4iλi) ≤

O(e−Bi) for some B > 0, then the rank-R pivoted Cholesky decomposition L̄RL̄>R gives

Tr
(
K− L̄RL̄>R

)
≤ O

(
Ne−BR

)
.

Runtime and space. The pivoted Cholesky algorithm adds two additional

steps to each Cholesky iteration: (1) computing the Schur compliment’s diag-

onal diag(Si+1) (to determine which elements to pivot), and (2) pivoting Si+1

and existing vectors `1, . . ., `i. Each addition is O(N) extra time (see [Har-

brecht et al., 2012, Thm. 1]). Therefore, the rank-R pivoted Cholesky factor

is not much different than R iterations of Cholesky, requiring O(NR2) time and

33

O(NR) space. Importantly, the pivoted Cholesky algorithm can produce low-

rank approximations without explicitly computing K. This is useful if K is struc-

tured or sparse and requires o(N2) storage. All that’s required is a routine for

computing the diagonal of K and an arbitrary row a(i). When K is not explic-

itly computed, the complexity isO(R2ρ(K)), where ρ(K) is the time to compute

a row and/or a diagonal (see Algorithm 2.1). For most structured/low-rank

matrices it will be the case that ρ(K) ≈ O(N).

Algorithm 2.1: Partial (rank-R) pivoted Cholesky decomposition.
Input : dK – diagonal of K.

row K(i) – function for computing the ith of matrix K.
Output: L̄R – the partial (rank-R) pivoted Cholesky factor.

π← [1, 2, . . . , N] // Vector representing permutation matrix Πi.

c0← 0
d̄K← dK // Permuted diagonal.

for i← 1 to R do
// Find index of largest entry in permutted dK.

m← arg maxj∈[i,N] d̄
(π(j))
K

// Update permutation.

π(i), π(m)← π(m), π(i)

// Get next row (according to permutation).

a(π(i))← row K(π(i))
// Cholesky iteration (with permuted indices).

`(i)← 0

`(i,π(i))←
√

d
(π(i))
K

// This inner for-loop can be vectorized for paralleism.

for j ← (i+ 1) to N do
`(i,π(j))←

(
a(π(i),π(j)) −∑i−1

k=1

(
`(k,π(i))`(k,π(j))

))
/`(i,π(i))

d(π(j))← d(π(j)) −
(
`(i,π(i))`(i,π(j))

)
end

end

return LR =
[
`(1), . . . , `(R)

]

34

2.3 Matrix-Vector Multiplication (MVM) Algorithms for Com-

puting Linear Solves and Other Matrix Functions

The primary focus of this thesis is avoiding the Cholesky decomposition for

GP learning and inference. Recall that the Cholesky decomposition is primarily

used to compute matrix solves and log determinants:

LL> = K̂XX, (K̂−1
XX)y = L−>L−1y, log |K̂XX| = 2

N∑
i=1

logL(ii)

We will instead compute (K̂−1
XX)y and log |K̂XX| (and other non-linear terms)

through algorithms that only utilize matrix-vector multiplication (MVMs) and

other simple vector operations. This approach, as we will demonstrate, has sev-

eral advantages: (1) it effectively utilizes GPU acceleration, (2) it reduces mem-

ory requirements, and (3) it simplifies the implementation of specialty mod-

els. We will rely on a family of iterative algorithms known as Krylov subspace

methods [e.g. Saad, 2003, Van der Vorst, 2003], which were originally developed

for large sparse matrices. Importantly, these algorithms can compute non-linear

terms without explicitly computing the matrix K̂XX. Instead, these methods only

access K̂XX through MVMs.

The next three chapters propose GP-specific Krylov subspace algorithms for

training and inference. In this remainder of this section, we introduce three

common Krylov methods that we use as building blocks: linear conjugate gra-

dients (CG), Lanczos tridiagonalization, and MINRES.

Intuition. At first glance, it may not be obvious how matrix-vector

multiplications—a linear operation—can compute non-linear operations like

35

K̂−1
XXb or log |K̂XX|. To motivate the use of MVM-based algorithms, we will

begin by reformulating matrix solves and log determinants to make their MVM

connection obvious. First, we will view K̂−1
XXy through an optimization lens.

Since K̂−1
XX is positive definite, we note that any matrix solve is the solution to

the following convex problem:

K̂−1
XXy = arg min

c∈RN

[1

2
c>(K̂XX) c− c>y

]
, (2.21)

The gradient of the objective function is (K̂XX) c− y. Thus, one could compute

K̂−1
XXy with gradient descent, and each gradient step only accesses K̂XX through

a MVM with the current solution c. Rather than using vanilla gradient descent

however, we will instead use a special decent method (conjugate gradients) that

carefully chooses its updates for faster convergence.

The connection between log determinants and MVMs is less straightfor-

ward. At a high-level, we note that the eigenvalues of K̂XX can be found

through MVM iterations. For example, the power method computes the largest

eigenvector by running the iteration cj+1 = (K̂XX)cj until convergence.4 In

practice computing a complete eigendecomposition of K̂XX through power it-

eration would be a highly inefficient way to compute log determinants. We

will instead compute these terms through stochastic Lanczos quadrature [Ubaru

et al., 2017] which similarly uses MVMs but avoids a full eigendecomposition.

With these intuitions in place, we will now introduce linear conjugate gradi-

ents, Lanczos tridiagonalization, and MINRES. These methods expand upon the

4Let λi,vi be the ith eigenvalue/vector of K̂XX. If we write the initial vector as a linear
combination of the eigenvectors c0 =

∑N
i=1 wivi, then the iterations simply scale the weights

wi by a factor λi: cj =
∑N
i=1 wiλ

j
ivi. After enough iterations, the largest eigenvalue λj1 will

dominate all others and so cj ≈ w1λ
j
1v1. See [e.g. Golub and Van Loan, 2012, Ch. 8] for details.

36

simple iterative procedures we outline above, yet converge to the true solutions

in many fewer iterations.

2.3.1 Linear Conjugate Gradients

Linear conjugate gradients (CG) [Hestenes et al., 1952] is an iterative method for

solving the optimization problem posed in Eq. (2.21) if K is positive definite. At

a high level, it is similar to gradient descent: each iteration updates an existing

solution by taking a step in a “search” direction. Unlike gradient descent, a

good solution to K−1b is often found in� N iterations, where N is the size of

the matrix K. Moreover, each iteration requires only a single MVM with K.

Here we offer a high level overview of the algorithm and its convergence

properties. Because CG is notoriously confusing and difficult to intuit, we refer

the reader to Shewchuk [1994] for a gentler introduction.

Overview. Conjugate gradients differs from vanilla gradient descent in two

ways: its’ choice of the decent direction and its’ choice of step size. Standard

gradient descent takes a constant step ϕ in the direction of the gradient rj at

every iteration:

c
(GD)
j+1 = cj − ϕrj, rj = Kcj − b.

(rj is also referred to as the “residual” of the current solution.) This approach is

inefficient because multiple iterations might take steps in the same direction.

On the other hand, the descent directions taken by conjugate gradients

d1, . . . ,dJ are mutually conjugate to one another. This means that all search di-

rections are orthogonal with respect to the inner product defined by K—i.e. for

37

all j 6= j′, we have 〈dj,dj′〉K = d>j Kdj′ = 0. A consequence of this is that no

two iterations move the solution cj+1 in the same direction. Each iteration takes

a variable step size αj that corresponds to the optimal step in the dj direction.

The resulting iterations are:

c
(CG)
j+1 = cj − αjdj.

where dj and αj are determined using formulas described below. The N con-

jugate descent vectors d1, . . . ,dN form a basis of RN , and therefore we can de-

scribe the solution as K−1b = c0 −
∑N

j=1 αjdj. In other words, these iterations

find the true solution K−1b in at most N iterations, though often� N iterations

finds a very close approximation.

The algorithm. By carefully choosing the conjugate descent directions

d1, . . . ,dN , the CG iterations can be computed through an extremely efficient

recurrence relation. At iteration j, the descent direction dj is given by taking

the residual rj = Kcj −b and making it conjugate to all previous descent direc-

tions:

dj = rj −
j−1∑
`=1

d>` Krj
d>` Kd`

d`.

(The above equation is very similar to Gram-Schmidt orthogonalization, ex-

cept that the resulting vectors are conjugate rather than orthogonal.) In prac-

tice, the sum reduces down to a single term (d>j−1Krj)/(d
>
j−1Kdj−1)dj−1 since

the residual already happens to be conjugate to all other search directions (see

[Shewchuk, 1994, Sec. 7-8] for a complete derivation). Moreover, the residual rj

and the step size αj can be computed through inner products of existing terms.

As a result, each iteration of CG requires only a single MVM (Kdj−1) and a few

additional vector inner products. The entire algorithm is thus a recurrence re-

38

Algorithm 2.2: Standard conjugate gradients (CG).
Input : mvm K(·) – function for matrix-vector multiplication (MVM)

with matrix K
b – vector to solve against

Output: c = K−1b.

c0← 0 // Current solution

r0← mvm K(c0) - b// Current residual

d0← r0 // ‘‘Descent’’ direction for next solution

for j ← 1 to J do
vj ← mvm K(dj−1)
αj ← (r>j−1rj−1)/(d>j−1vj)
cj ← cj−1 + αjdj−1

rj ← rj−1 − αjvj
if ‖rj‖2 < tolerance then return cj ;
βj ← (r>j rj)/(r

>
j−1rj−1)

dj ← rj − βjdj−1

end

return cJ

lation involving 3 vectors (see Algorithm 2.2), which makes CG very fast and

memory efficient.

Convergence. While N iterations of conjugate gradients finds the exact solu-

tion, often J � N iterations find a solution within numerical precision of the true

solution. Through some numerical manipulation [Shewchuk, 1994, Ch. 9], one

can show that the solution cJ at iteration J is optimal with respect to norm in-

duced by the matrix K:

cJ = arg min
c∈KJ (K,b)

1

2
c>Kc− c>b

= arg min
c∈KJ (K,b)

‖c− (K−1b)‖K, (2.22)

39

where KJ(K,b)—the domain that cJ is optimal over—is referred to as the J th

Krylov subpace of K and b.

KJ(K,b) =
{
b, Kb, K2b, . . . , KJ−1b

}
. (2.23)

(This is why CG is referred to as a “Krylov Subspace Method”.) Note the con-

nection between Eq. (2.23) and MVMs: the vectors spanning KJ(K,b) can be

formed by applying a MVM to the previous vector: KJb = K
(
KJ−1b

)
. The CG

search directions d1, . . . ,dJ lie in the Krylov subspace, and so the matrix-vector

multiplication KdJ−1 in Algorithm 2.2 expands KJ(K,b) to the next subspace

KJ+1(K,b).

Eqs. (2.22) and (2.23) explain why CG rapidly converges. Since the Krylov

subspace contains powers of K applied to b, we can interpret Eq. (2.22) as an

optimal polynomial approximation of K−1:

cJ = arg min
polyJ (K)

‖polyJ(K)b− (K−1b)‖K,

where polyJ(K) is a J th-degree polynomial. From this perspective, one can de-

rive CG’s famous (though loose) convergence bound (see [e.g. Shewchuk, 1994,

Ch. 9]):

Theorem 2.2 (Convergence of CG). Let K be a N × N positive definite matrix and

let b be a vector in RN . After J iterations of CG, the difference between cJ and the true

solution K−1b is bounded by:

‖cJ − (K−1b)‖K ≤ 2

[√
κ(K)− 1√
κ(K) + 1

]J
‖b‖K,

where κ(K) = ‖K‖2/‖K−1‖2 is the condition number of K.

Thus CG converges exponentially to the true solve Kb−1. This bound depends

on the condition number of K, which is often quite large for GP kernel matrices.

40

In practice however, convergence can be much faster if, for example, the eigen-

values of K are clustered [Saad, 2003]. We find that a few hundred iterations of

CG often produces solves within 3-5 decimal places for most kernel matrices,

even when N ≥ 100,000.

Preconditioning. A commonly-used approach to accelerate CG convergence

is to lower the κ(K) condition number in Theorem 2.2. This can be accomplished

through preconditioning, which introduces a matrix P to solve the related lin-

ear system

P−1Kc = P−1b

instead of K−1b. Both systems have the same solution c, but the preconditioned

system’s convergence depends on the conditioning of P−1K rather than that of

K. The algorithm for preconditioned conjugate gradients (PCG) is essentially the

same as vanilla CG, with the additional step of applying P−1 to the MVMs (i.e.

P−1Kdj−1) and residuals (i.e. P−1rj). See Algorithm 2.3 for details.

Choosing a preconditioner P−1 is a trade-off between computational effi-

ciency and effectiveness. Trivially, the best preconditioner is P−1 = K−1 which

would reduce the condition number in Theorem 2.2 to κ = 1. However this is

obviously not a practical choice—if we already had a way to efficiently compute

K−1 there would be no need to run CG! The most effective preconditioners have

simple-to-compute inverses (e.g. diagonal matrices), yet are able to closely ap-

proximate K−1. A common (though often ineffective) choice of P is the Jacobi

preconditioner, which is simply the diagonal of K (i.e. P = diag(K)).

The design of effective preconditioners is an active area of research and is too

extensive to adequately review here. We refer the reader to [Saad, 2003] which

41

Algorithm 2.3: Preconditioned conjugate gradients (PCG). Terms in
violet differ from standard CG (Algorithm 2.2).

Input : mvm K(·) – function for matrix-vector multiplication (MVM)
with matrix K
b – vector to solve against
P−1(·) – function for preconditioner

Output: c = K−1b.

c0← 0 // Current solution

r0← mvm K(c0) - b// Current residual

z0← P−1(r0) // Preconditioned residual

d0← z0 // ‘‘Descent’’ direction for next solution

for j ← 1 to J do
vj ← mvm K(dj−1)
αj ← (r>j−1zj−1)/(d>j−1vj)
cj ← cj−1 + αjdj−1

rj ← rj−1 − αjvj
if ‖rj‖2 < tolerance then return cj ;
zj ← P−1(rj)
βj ← (z>j zj)/(z

>
j−1zj−1)

dj ← zj − βjdj−1

end

return cJ

devotes two chapters to different preconditioning methods.

2.3.2 Lanczos Tridiagonalization

The Lanczos [1950] algorithm iteratively produces a partial tridiagonalization

of the symmetric matrix K∈RN×N . At iteration J , K is factorized as

KQJ = QJTJ + rJe
>
J , (2.24)

where QJ ∈ RN×J has orthonormal columns, TJ ∈ RJ×J is symmetric tridiago-

nal, and (rJe
>
J) ∈ RN×J is a residual term involving the unit vector eJ . After N

iterations, the residual term will be zero and we recover the complete tridiago-

42

nalization K = QNTNQ>N . In practice however, the complete tridiagonalization

is almost never computed. The matrices QJ ,TJ after J � N iterations can

approximate functions involving K with high degrees of accuracy. We will dis-

cuss how QJ and TJ can approximate log determinants and matrix solves after

introducing the algorithm itself.

The algorithm. Given an initial vector b, J iterations of the Lanczos algo-

rithm form an orthonormal basis of the J th Krylov subspace (Eq. (2.23)). Ap-

plying Gram-Schmidt orthogonalization to
[
b, Kb, . . . , KJ−1b

]
produces the

columns of QJ =
[
b/‖b‖, q(2), . . . , q(J)

]
, and the orthogonalization coeffi-

cients are collected into TJ . Because K is symmetric, each vector only needs to

be orthogonalized against the two preceding vectors, which results in the tridi-

agonal structure of T [Golub and Van Loan, 2012]. In practice, the columns of

QJ and the sub-diagonal/diagonal entries of Tj can be computed using a sim-

ple iterative procedure (Algorithm 2.4). Each iteration produces a new column

of QJ , requiring a single MVM with K. In total J iterations requires J MVMs.

In practice, Algorithm 2.4 can be numerically unstable after many iterations

of J (e.g. J > 50). This is because the columns of QJ lose orthogonality due to

round-off errors. We discuss ways to overcome these instabilities in Section 4.6.

Using Lanczos to estimate f(K)b. Lanczos tridiagonalization is a general-

purpose algorithm, as it can be used to compute an approximation for any

f(K)b, where f(·) is a matrix function (i.e. matrix inverse or matrix logarithm).

First, we note that, if QNTNQ>N = K is a complete tridiagonalization, then TN

43

Algorithm 2.4: Lanczos tridiagonalization.
Input : mvm K() – function for matrix-vector multiplication (MVM)

with matrix K
b – initial (probe) vector
J – number of iterations

Output: QJ ,TJ – orthonormal and tridiagonal matrices

q(1)← b/‖b‖ // Current column of QJ

v← mvm K(q(1)) // Buffer for MVM output

γ(1)← q(1)>v // Current main diagonal entry of TJ

v← v − γ(1)q(1)

δ(1)← ‖v‖ // Current sub-diagonal entry of TJ

for j ← 2 to J do
// Run Gram-Schmidt orth. against previous two QJ vectors

q(j)← v/δ(j−1)

v← mvm K(q(j)) −δ(j−1)q(j−1)

γ(j)← q(j)>v
v← v − γ(j)q(j)

δ(j)← ‖v‖
end
// Collect orthonormal columns q(j) and tridiagonal entries γ(j),

δ(j)

QJ ←
[
q(1), . . . , q(J)

]
∀j ∈ [1, J] T

(j,j)
J ← γ(j)

∀j ∈ [1, J − 1] T
(j,j−1)
J ← δ(j)

∀j ∈ [1, J − 1] T
(j−1,j)
J ← δ(j)

return QJ , TJ

and K are similar matrices and therefore:

f(K) = QN

[
f(TN)

]
Q>N . (2.25)

Typically, the Lanczos algorithm is used only to compute a partial tridiagonal-

ization QJ , TJ with J � N . However, this partial tridiagonalization can be

used to approximate f(K) applied to the initial Lanczos vector b:

f(K)b ≈
(
QJ

[
f(TJ)

]
Q>J

)
b.

= ‖b‖2

(
QJ

[
f(TJ)

])
e1 , cJ , (2.26)

44

where the second line holds because q1 = b/‖b‖. The estimate cJ tends to

converge exponentially as J increases, though the rate of convergence depends

on the conditioning of K. Moreover, the computational complexity of Eq. (2.26)

is quite small since we can take advantage of the tridiagonal structure of TJ .

For many functions of interest, there are special variants of Eq. (2.26) that

offer more efficient computation. We now outline two special cases that can be

applied to Gaussian process inference.

Estimating log determinants. Ubaru et al. [2017] introduce a method to pro-

duce unbiased estimates of log determinants using Lanczos tridiagonalization

and stochastic trace estimation [Hutchinson, 1990, Avron and Toledo, 2011, Fitzsi-

mons et al., 2018]. They note that the log determinant can be re-written as:

log |K| = Tr (log K)

≈ 1

T

T∑
i=1

z(i)> (log K) z(i). (2.27)

where log K denotes the matrix logarithm, and z(i) are i.i.d random variables

with zero mean and unit covariance (e.g. z(i) ∼ N [0, I]). It can be seen with a

little mathematical manipulation that the second line is an unbiased estimate of

the trace operator [Hutchinson, 1990].

To compute each of the z(i) (log K) z(i) terms, we turn to Eq. (2.25). Let Q
(i)
J ,

T
(i)
J correspond to the Lanczos matrices with initial vector q

(i)
1 = z(i)/‖z(i)‖.

Then we apply Eq. (2.26):

z(i)> (log K) z(i) ≈ z(i)>
(
Q

(i)
J

[
log T

(i)
J

]
Q

(i)>
J

)
z(i)

= ‖z(i)‖2
2

(
e>1
[
log T

(i)
J

]
e1

)
. (2.28)

45

Combining Eq. (2.27) and Eq. (2.28) gives us an unbiased estimate of log |K|.

This estimate, referred to as the stochastic Lanczos quadrature estimate of

log |K|, converges exponentially in J (the number of Lanczos iterations):

Theorem 2.3 (Corrolary 4.5 of Ubaru et al. [2017]). Let K ∈ RN×N be a positive

definite matrix with condition number κ(K). Suppose we estimate Γ ≈ log |K| using

Eqs. (2.27) and (2.28) with:

• J ≥ 1
4

√
3κ(K) log (O(κ(K))/ε) iterations of Lanczos,5 and

• T ≥ 32
ε2

log
(

2
δ

)
random z(i) ∼ N [0, I] vectors.6

Then the error of the stochastic Lanczos quadrature estimate Γ is probabilistically

bounded by:

Pr
[∣∣∣log |K| − Γ

∣∣∣ ≤ εN
]
≥ (1− δ) .

Computing matrix solves. Another common application of Lanczos tridiag-

onalization is computing K−1b. Let QJ and TJ be the Lanczos matrices using

b as the initial vector (i.e. q1 = b/‖b‖). We can approximate the matrix solve

using Eq. (2.26):

K−1b ≈ ‖b‖2QJT
−1
J e1 (2.29)

where again e1 ∈ RJ is the first unit vector [1, 0, 0, . . . , 0].

5The exact value for the O(κ(K)) constant is
(

5κ(K) log(2(κ(K) + 1))/
√

2(κ(K) + 1)
)

.
6The constant originally used by Ubaru et al. [2017] assumes that the z(i) are Rademacher

random variables rather than Gaussian random variables. The variance of stochastic trace es-
timation with Gaussian variables is bounded with a factor of 32 rather than 24 (see [Roosta-
Khorasani and Ascher, 2015, Eqs. 4 and 5]), and so we have adjusted the constant accordingly.

46

2.3.3 Connection between CG and Lanczos

The Lanczos and CG algorithms are very closely related, as they are both Krylov

subspace methods. Here we show that the two algorithms can be derived from

one another. We will exploit this fact in the next two chapters.

Deriving CG from Lanczos. It can be shown that, if K is positive definite, then

the solution in Eq. (2.29) is exactly the same as the CG solution after J iterations.

In fact, one way to derive Algorithm 2.2 is by showing that Eq. (2.29) can be

reduced to the three-term CG recurrence. In practice, the CG algorithm tends to

be preferred over Eq. (2.29) for computing K−1b. The advantages of CG are

(1) CG only stores 3 vectors at any given iteration, whereas Eq. (2.29) requires

storing the QJ ∈RN×J matrix;

(2) CG is numerically stable, whereas the Lanczos vectors lose orthogonality

(after say J > 50 iterations); and

(3) CG is more easily preconditioned.

However, one advantage of Lanczos is that the QJ and TJ matrices can be used

to jump-start subsequent solves K−1b′. Parlett [1980], Saad [1987], and Schnei-

der and Willsky [2001] argue that subsequent solves can be approximated as

K−1b′ ≈
(
QJT

−1
J Q>J

)
b′, (2.30)

where QJ and TJ come from a previous solve.7 We will use this in Chapter 4.

7Alternatively, one could use
(
QJT−1J Q>J

)
b′ as an “initial guess” to the solve K−1b′ that

can be refined with additional CG iterations.

47

Deriving Lanczos from CG. Additionally, one can recover part of the Lanczos

tridiagonalization from conjugate gradients. Saad [2003] and others show that

it is possible to recover the TJ tridigonal Lanczos matrix by reusing the αj and

βj coefficients generated in the CG iterations (see Algorithm 2.3).

Observation 2.1 (Recovering Lanczos tridiagonal matrices from PCG [Saad,

2003]). Assume we use J iterations of standard preconditioned conjugate gradients

to solve K−1b with preconditioner P. Let α1, . . . , αp and β1, . . . , βp be the scalar coef-

ficients from each iteration (defined in Algorithm 2.3). The matrix

1
α1

√
β1
α1

0
√
β1
α1

1
α2

+ β1
α1

√
β2
α2

√
β2
α2

1
α3

+ β2
α2

√
β3
α3

.
√
βm−1

αm−1

0

√
βm−1

αm−1

1
αm

+ βm−1

αm−1


is equal to the Lanczos tridiagonal matrix TJ , formed by running J iterations of Lanc-

zos to achieve (P−1K) QJ = QJTJ + re>J) with probe vector b.

(See [Saad, 2003], Section 6.7.3.) In other words, we can recover the Lanczos

tridiagonal matrix TJ simply by running CG. However, the orthonormal matrix

QJ cannot be as easily derived as a CG byproduct.

2.3.4 MINRES

The method of minimum residuals (MINRES) [Paige and Saunders, 1975] is an

alternative to linear conjugate gradients, with the advantage that it can be ap-

plied to indefinite symmetric matrices. Paige and Saunders [1975] formulate

48

MINRES to solve the least-squares problem arg minc ‖Kc − b‖2. Each iteration

J produces a solution cJ which is optimal within the J th Krylov subspace:

c
(MINRES)
J = arg min

c∈KJ (K,b)

‖Kc− b‖2. (2.31)

Note the primary differences between Eq. (2.31) and the CG optimality equation

(Eq. (2.22)): CG optimizes the error with respect to the K norm, while MINRES

optimizes the residual with respect to the 2 norm. This is why MINRES can be

applied to indefinite matrices while CG cannot.

Through some mathematical manipulation, one can reformulate Eq. (2.31) as

an unconstrained optimization problem:

c
(MINRES)
J = ‖b‖2QJzJ , zJ = arg min

z∈RJ

∥∥∥(T̃J

)
z− e1

∥∥∥
2
, T̃J

 TJ

‖rJ‖2e
>
J

 , (2.32)

where e1, eJ are unit vectors, and QJ , TJ , and rJ are the outputs from the Lanc-

zos algorithm. Since Eq. (2.32) is a least-squares problem, we can write its ana-

lytic solution using the QR factorization of T̃J =QQQJRJ :

c
(MINRES)
J = ‖b‖2 QJ

(
R−1
J QQQ>J

)
e1. (2.33)

One way to perform MINRES is first running J iterations of the Lanczos algo-

rithm, computing T̃J = QQQJRJ , and then plugging the resulting QJ , QQQJ , and

RJ into Eq. (2.33). Paige and Saunders instead introduce a vector recurrence

to iteratively compute c(MINRES)
J . This recurrence relation, which is given by Al-

gorithm 2.5 and broadly described below, is exactly equivalent to Eq. (2.33);

however it uses careful bookkeeping to avoid storing any N × J terms.

First we note that the T̃J matrices are formed recursively, and thus their QR

49

factorizations are also recursive:

QQQ>T̃J =

 QQQ>J−1 QQQ>(J,1:J−1)

QQQ>(1:J−1,J+1) Q(J,J+1)


T̃J−1 t(J)

0> ‖rJ‖

 =

RJ−1 r(J,1:J−1)

0 R(J,J)

 = RJ

where t(J) and [r(J,1:J−1);R(J,J)] are the last columns of TJ and RJ respectively.

Moreover, if we recursively form R−1
J as

R−1
J =

RJ−1 r(J,1:J−1)

0 R(J,J)


−1

=

R−1
J−1

(
R−1
J−1r

(J,1:J−1)
)
/R(J,J)

0 1/R(J,J)

 ,
then Eq. (2.33) can be re-written in a decent-style update:

c
(MINRES)
J = ‖b‖2

[
QJ−1q

(J)

]R−1
J−1

R−1
J−1r

(J,1:J−1)

R(J,J)

0 1/R(J,J)


 QQQ>J−1 QQQ>(J,1:J−1)

QQQ>(1:J−1,J+1) Q(J,J+1)

 e1

= ‖b‖2

QJ−1R
−1
J−1

QJ−1R
−1
J−1r

(J,1:J−1)

R(J,J)

0 1/R(J,J)qJ−1


 QQQ>J−1e1

Q>(1,J+1)


=
(
‖b‖2QJ−1R

−1
J−1QQQJ−1e1

)
c
(MINRES)
J−1

+
‖b‖2Q>(1,J+1)

R(J,J)

ϕJ

QJ−1R
−1
J−1r

(J,1:J−1)

qJ−1


dJ

.

(2.34)

Thus c
(MINRES)
J = c

(MINRES)
J−1 + ϕJdJ . We note that r(J,1:J−1), which is the next

entry in the QR factorization of T̃J , can be cheaply computed using Givens

rotations (see [e.g. Golub and Van Loan, 2012, Ch. 11.4.1]). Moreover, only the

last two entries of r(J,1:J−1) will be non-zero (due to the tridiagonal structure of

T̃J . Consequentially, we only need to store the last two vectors of QJ−1R
−1
J−1,

which again can be computed recursively.

The recurrence requires the storage of ≈ 6 vectors. As with CG, each itera-

tion requires a single MVM with K (to form the next Lanczos vector qJ); all sub-

sequent operations are O(N). The entire procedure is given by Algorithm 2.5.

50

Algorithm 2.5: Method of minimum residuals (MINRES).
Input : mvm K(·) – function for MVM with matrix K

b – vector to solve against
Output: c = K−1b.

c1← 0 // Current solution.

d1,d0← 0 // Current & prev. ‘‘search’’ direction.

ϕ2← ‖b‖2 // Current ‘‘step’’ size.

q1← b/‖b‖2 // Current Lanczos vector.

v1← mvm K(q0) // Buffer for MVM output.

δ1← ‖b‖2 // Current Lanczos residual/sub-diagonal.

δ0← 1 // Prev. Lanczos residual/sub-diagonal.

η1← 1 // Current scaling term.

η0← 0 // Prev. scaling term.

for j ← 2 to J do
// Run one iter of Lanczos. Gets next vector of Q matrix,

and next diag/sub-diag (γ, δ) entries of T matrix.

qj ← vj/δj
vj ← mvm K(qj) −δjqj−1

γj ← qjvj
vj ← vj − γjqj
δj ← ‖vj‖
// Compute the next r(J) (part of QR) via Givens rotations.

There are three non-0 entries: R(J,J−2:J) = [εJ , ζJ , ηJ].

εj ← δj−1

(
δj−2/

√
δ2
j−2 + η2

j−2

)
ζj ← δj−1

(
ηj−2/

√
δ2
j−2 + η2

j−2

)
ηj ← γj

(
ηj−1/

√
δ2
j−1 + η2

j−1

)
+ ζj

(
δj−1/

√
δ2
j−1 + η2

j−1

)
ζj ← ζj

(
ηj−1/

√
δ2
j−1 + η2

j−1

)
+ γj

(
δj−1/

√
δ2
j−1 + η2

j−1

)
ηj ← ηj

(
ηj/
√
δ2
j + η2

j

)
// Compute ‘‘step’’ size ϕJ =QQQ(1,J+1)/R(J,J).

ϕj ← ϕj−1

(
δj−1/

√
δ2
j−1 + η2

j−1

)(
ηj/
√
δ2
j + η2

j

)
// Update the current solution based on the r(J) entries

(εJ , ζJ , ηJ) and previous search vectors dj−1, dj−2.

dj ← (q− ζjdj−1 − εjdj−2) /ηj
cj ← cj−1 + ϕjdj

end

return ‖b‖2 cj

51

CHAPTER 3

GAUSSIAN PROCESS TRAINING VIA BLACK-BOX MATRIX × MATRIX

INFERENCE

3.1 Introduction

Training a Gaussian process regression model ensures that the mean function,

kernel function, and likelihood are well suited to a given dataset. It is worth

noting that GPs have few learnable parameters, especially compared to highly-

parametric models like neural networks. Nevertheless, the mean, kernel, and

likelihood parameters greatly influence the performance of the model and there-

fore should be well-chosen. We will denote this set of learnable parameters by

the vector θ.

Typically, θ is learned by optimizing the GP marginal log likelihood

(Eq. (2.6)) via a gradient descent method [Rasmussen and Williams, 2006].

Alternatively, θ can be inferred via eliptic slice sampling [Murray et al.,

2010], gradient-based samplers [Havasi et al., 2018], or other MCMC meth-

ods. Eq. (2.6) can be also used to choose an appropriate kernel function via

Bayesian model selection [Rasmussen and Williams, 2006, Duvenaud et al.,

2013]. Regardless of the desired mechanism—optimization, sampling, or model

selection—training a Gaussian process will require repeatedly computing the

GP marginal log likelihood and its derivative (i.e. ≈ 50− 100 times).

Most GP implementations compute the marginal log likelihood and its

derivative using the Cholesky factor of the training kernel matrix LL> = K̂XX.

As described in Chapter 1 this has numerous drawbacks. Besides itsO(N3) time

52

complexity and O(N2) space requirements, the Cholesky factorization is an in-

herently sequential algorithm that does not effectively utilize modern hardware

like GPUs. Scalable approximations can remedy these concerns to some extent,

yet such approximations tend to require significant implementation efforts.

In this chapter, we introduce a highly efficient framework for Gaussian pro-

cess training. Whereas previous approaches require the user to provide routines

for computing the GP marginal log likelihood for a sufficiently complex model,

our framework only requires access to a blackbox routine that performs matrix-

matrix multiplications with the kernel matrix and its derivative. Accordingly,

we refer to our method as Black-Box Matrix × Matrix (BBMM) Inference.

In contrast to the Cholesky decomposition, matrix multiplication fully uti-

lizes GPU acceleration. We will demonstrate that this approach also signifi-

cantly eases implementation for a wide class of specialty GP models. In partic-

ular, we make the following contributions:

(1) We introduce a modified batched version of linear conjugate gradients

(mBCG) that provides all computations necessary for both the marginal

likelihood and its derivatives. mBCG uses matrix-matrix multiplications

that more efficiently utilize modern hardware than both existing Cholesky

and MVM based training. It also circumvents several critical space com-

plexity and numerical stability issues present in existing MVM methods.

Perhaps most notably, mBCG reduces the time complexity of exact GP in-

ference from O(N3) to O(N2).

(2) We introduce a method for preconditioning this modified conjugate gradi-

ents algorithm based on the partial pivoted Cholesky decomposition [Har-

brecht et al., 2012]. All required operations with this preconditioner are

53

efficient, and in practice require negligible time.

(3) We empirically demonstrate the efficacy of BBMM for medium-scale ex-

act GPs and several scalable methods. On datasets with up to 3,000 data

points, we show that exact GPs with BBMM are up to 20× faster than

Cholesky-based GPs. Moreover, the popular SKI [Wilson and Nickisch,

2015] and SGPR [Titsias, 2009] frameworks with BBMM achieve up to 15×

and 4× speedups (respectively) on datasets as large as 500,000 data points.

We also demonstrate that BBMM performs linear solves with higher accu-

racy than Cholesky in single-precision arithmetic.

In addition, we discuss how BBMM is incorporated into the GPyTorch software

package. We demonstrate that BBMM enables simple implementations of exact

GPs, multi-output GPs, and specialty models like the SKI and SGPR approxi-

mations.

Related work. Recently, a number of researchers have proposed alternatives

to Cholesky-based training, instead relying on iterative numerical algorithms

to compute Eqs. (2.6) and (2.7) [Cunningham et al., 2008, Murray, 2009, Saatçi,

2012, Wilson, 2014, Wilson and Nickisch, 2015, Cutajar et al., 2016, Dong et al.,

2017, Gardner et al., 2018b]. These approaches rely on the conjugate gradients

and Lanczos algorithms described in Section 2.3, both of which perform matrix-

vector multiplication (MVMs) with the training kernel matrix. One key advan-

tage is that MVM approaches can exploit algebraic structure for increased com-

putational efficiencies.

The method proposed in this chapter builds upon this prior work in a few

notable ways. Firstly, the mBCG method computes all training terms through a

54

single iterative method. This is in contrast to existing methods that use separate

algorithms for matrix solves (conjugate gradients) and log determinants (Lanc-

zos quadrature). Secondly, our BBMM framework is designed to be an general

purpose training approach. Many of the existing MVM-based methods are em-

ployed only when the training kernel matrix has structure that affords < O(N2)

MVM routines. (The notable exception is the work of Cutajar et al. [2016], which

uses MVM techniques for standard un-structured GPs.) Our approach, which

has a special focus on GPU acceleration, is designed for the general case (O(N2)

MVMs) as well as for special cases when there is exploitable structure.

3.2 Gaussian Process Training Through Matrix Multiplication

The goal of this chapter is to replace existing training strategies with a unified

framework that utilizes modern hardware efficiently. We additionally desire

that complex GP models can be used in a blackbox manner without additional

training rules. To this end, our method reduces the bulk of GP inference to one

of the most efficiently-parallelized computations: matrix-matrix multiplication.

We call our method Black-Box Matrix × Matrix inference (BBMM) because it

only requires a user to specify a matrix multiply routine for the kernel K̂XX(·)

and its derivative ∂K̂XX

∂θ
(·).

Required operations. To train a GP we must compute the marginal log like-

lihood (Eq. (2.6)) and its derivative (Eq. (2.7)). We rewrite the equations here,

55

assuming a prior mean of zero for brevity:

− log p(y | X,θ) ∝ log
∣∣∣K̂XX

∣∣∣+ y>K̂−1
XXy,

∂ − log p(y | X,θ)

∂θ
∝ Tr

(
K̂−1

XX

∂K̂XX

∂θ

)
− y>K̂−1

XX

∂K̂XX

∂θ
K̂−1

XXy,

where again K̂XX is the training kernel matrix plus observational noise (K̂XX =

KXX + σ2
obsI). These equations have three operations that dominate their time

complexity:

(1) the linear solve K̂−1
XXy,

(2) the log determinant log |K̂XX|, and

(3) the trace term Tr(K̂−1
XX

∂K̂XX

∂θ
).

The Cholesky decomposition is used in many GP implementations to com-

pute these three terms. This procedure factorizes K̂XX as LL>, where L is

lower triangular. As discussed in Section 2.2.3, computing L requires O(N3)

time and O(N2) memory. After computing this factorization, matrix solves

and log determinants take O(N2) and O(N) time respectively. In general, this

asymptotic complexity cannot be reduced even if K̂XX has nice structure (e.g.

Toeplitz). Furthermore, its recursive nature makes the Cholesky algorithm less

amenable to GPU acceleration since GPUs are designed to parallelize matrix-

vector multiplications. Nguyen et al. [2019] aim to alleviate these costs through

distributed computing, yet their approach requires quadratic communication

costs and quadratic memory.

MVM-based training methods. As described in Section 2.3, K̂−1
XXy can also

be computed using conjugate gradients (CG) [Cunningham et al., 2008, Cutajar

56

et al., 2016], and the other two quantities can be computed using the Lanczos

tridiagonalization algorithm [Ubaru et al., 2017, Dong et al., 2017] or entropic

estimates [Fitzsimons et al., 2018]. These MVM-based methods are asymptoti-

cally faster and more space efficient than Cholesky based methods [Wilson and

Nickisch, 2015, Dong et al., 2017]. Additionally, these methods are able to ex-

ploit algebraic structure in the data for further efficiencies [Cunningham et al.,

2008, Saatçi, 2012, Wilson and Nickisch, 2015]. We aim to expand on these exist-

ing methods. In particular, our goals are to

(1) introduce a unified MVM algorithm that simultaneously computes all

terms to improve parallelization/GPU utilization; and

(2) avoid using Lanczos tridiagonalization for the second two terms, as it suf-

fers from numerical instabilities [Golub and Van Loan, 2012].

3.2.1 Modified Batched Conjugate Gradients (mBCG)

For this purpose, we introduce a modified Batched Conjugate Gradients (mBCG) al-

gorithm. Standard conjugate gradients takes as input a vector y and, after J iter-

ations, outputs an approximate solve cJ ≈ K̂−1
XXy (with equality when J = N).

We modify conjugate gradients to (1) perform linear solves with multiple right

hand sides simultaneously; and (2) return tridiagonal matrices corresponding to

partial Lanczos tridiagonalizations of K̂XX. Specifically, mBCG takes as input a

matrix
[
y, z(1), · · · , z(T)

]
, and outputs:[

c(0), c(1), · · · , c(T)
]

= K̂−1
XX

[
y, z(1), · · · , z(T)

]
, T(1), . . . , T(T) (3.1)

where T(1), . . . ,T(T) are the partial Lanczos tridiagonalizations of K̂XX with re-

spect to the vectors z(1), . . . , z(T) (see Section 2.3.2).

57

Using mBCG for GP training. Before describing the details of the mBCG al-

gorithm, we will first discuss how its outputs can be used to compute the three

GP training terms: K̂−1
XXy, Tr(K̂−1

XX
∂K̂XX

∂θ
), and log |K̂XX|.

(1) K̂−1
XXy is equal to c(0) in Eq. (3.1), directly returned from mBCG.

(2) Tr(K̂−1
XX

∂K̂XX

∂θ
) can be approximated using stochastic trace estimation

[Hutchinson, 1990, Fitzsimons et al., 2018], which treats this term as a

sum of linear solves. Given i.i.d. random variables z(1), . . . , z(T) so that

E
[
z(i)
]

= 0 and E
[
z(i)z(i)>

]
= I, the matrix trace can be written as

Tr(A) = E
[
z(i)>Az(i)

]
. Thus,

Tr

(
K̂−1

XX

∂K̂XX

∂θ

)
= E

[
z(i)>K̂−1

XX

∂K̂XX

∂θ
z(i)

]

≈ 1

T

T∑
i=1

(
z(i)>K̂−1

XX

)(∂K̂XX

∂θ
z(i)

)
(3.2)

is an unbiased estimator of the derivative. This computation motivates the

z(1), . . . , z(T) terms in Eq. (3.1). A single matrix multiply with the derivative

∂K̂XX

∂θ
[z(1), . . . , z(T)] yields the remaining terms.

(3) log |K̂XX| can be estimated using the stochastic Lanczos quadrature rou-

tine of Ubaru et al. [2017], as described in Section 2.3.2. To briefly summa-

rize, this approach approximates the matrix logarithm as

(log A) ≈ z(i)Q(i)
(
log T(i)

)
Q(i)>z(i),

where Q(i) and T(i) are the orthogonal and tridiagonal matrices from Lanc-

zos with initial vector z(i). Combining stochastic trace estimation with this

58

approximation gives us

log |K̂XX| = Tr
(

log K̂XX

)
≈ 1

T

T∑
i=1

z(i)>Q(i)
(
log T(i)

)
Q(i)>z(i)

=
1

T

T∑
i=1

‖z(i)‖2 e(1)>
(
log T(i)

)
e(1),

where e(1) = [1, 0, , . . . , 0]. (The reduction in the second line comes from the

orthogonality of Q(i) with z(i)/‖z(i)‖2 being its first column.) Therefore, we

can estimate the log determinant of K̂XX simply by computing logarithms

of the tridiagonal matrices returned by mBCG in Eq. (3.1).

We note that our derivative and log determinant estimates are also proposed by

Cutajar et al. [2016] and Dong et al. [2017], respectively. Notably, Cutajar et al.

[2016] does not return a log determinant estimate and therefore their approach

cannot be used for sampling θ or Bayesian model selection. We further differ

from Cutajar et al. [2016] in that we use batched operations to compute all terms

simultaneously. We differ from Dong et al. [2017] in that we avoid the explicit

Lanczos tridiagonalization algorithm (Algorithm 2.4) and thus circumvent its

storage and numerical stability issues [Golub and Van Loan, 2012].

Now that we have motivated the terms produced by mBCG, we will present

the algorithm itself.

The mBCG algorithm, presented in Algorithm 3.1, makes two changes to the

standard conjugate gradients algorithm (Algorithm 2.3). In particular, it per-

forms multiple solves A−1B =
[
A−1b(0), . . . , ,A−1b(T)

]
simultaneously using

matrix-matrix multiplication (MMM), and it also returns Lanczos tridiagonal-

ization matrices T(1), . . . , T(T) associated with each of the solves.

59

Algorithm 3.1: Modified batch conjugate gradients (mBCG). Terms
in green represent matrix operations that were originally vector op-
erations in standard PCG (Algorithm 2.3). Terms in red compute the
Lanczos tridiagonalization matrices.

Input : mmm K(·) – function for matrix-matrix multiplication with
matrix K
B – N × (T + 1) matrix to solve against
P̂−1(·) – func. for preconditioner

Output: C = K−1B, T1, . . ., TT (tridiag. matrices for b(2), . . ., b(T+1)).

C0← 0 // Current solutions

R0← mmm K(C0) - B // Current errors

Z0← P̂−1(R0) // Preconditioned errors

D0← Z0 // ‘‘Search’’ directions for next solutions

T1, . . .TT ← 0 // Tridiag matrices

for j ← 1 to J do
Vj ← mmm K(Dj−1)
αj ← (Rj−1 ◦ Zj−1)>1/(Dj−1 ◦Vj)

>1
Cj ← Cj−1+ diag(αj) Dj−1

Rj ←Rj−1− diag(αj) Vj

if ∀i
∥∥∥r(i)

j

∥∥∥
2
< tolerance then return Cj ;

Zj ← P̂−1(Rj)
βj ← (Zj ◦ Zj)

>1/(Zj−1 ◦ Zj−1)>1
Dj ← Zj− diag(βj) Dj−1

∀i T
(j,j)
i ← 1/α

(i)
j + β

(i)
j−1/α

(i)
j−1

∀i T
(j−1,j)
i ←

√
β

(i)
j−1/α

(i)
j

∀i T
(j,j−1)
i ←

√
β

(i)
j−1/α

(i)
j

end
return CJ , T1, . . .TT

The majority of the lines in Algorithm 3.1 are direct adaptations of lines from

Algorithm 2.3 to handle multiple vectors simultaneously. We denote these lines

in green. For example, performing a matrix-matrix multiply AB is equivalent to

performing a matrix-vector multiply Ab(i) for each column of B. Thus we can

replace multiple MVM calls with a single MMM call. In standard PCG, there

are two scalar coefficient used during each iteration j: αj and βj (see Algo-

rithm 2.3). Note that each solve c(0), . . . , c(T) in mBCG uses different scalar val-

60

ues. Therefore, mBCG replaces the scalers with two coefficient vectors: αj ∈ RT+1

and βj ∈ RT+1, where each of the vector entries corresponds to a single solve.

There are two types of operations involving these coefficients:

(1) updates (e.g. αj ← (Rj−1 ◦ Zj−1)>1/(Dj−1 ◦Vj)
>1) and

(2) scalaing (e.g. Cj ← Cj−1+ diag(αj) Dj−1).

The update rules are batched versions of the update rules in the standard CG

algorithm. For example:
α

(0)
j

...

α
(T)
j

 =
(Rj−1 ◦ Zj−1)>1

(Dj−1 ◦Vj)>1
=



(
r
(0)
j−1 ◦ z

(0)
j−1

)
1(

d
(0)
j−1 ◦ v

(0)
j

)
1

...(
r
(T)
j−1 ◦ z

(T)
j−1

)
1(

d
(T)
j−1 ◦ v

(T)
j

)
1

 =



(
r
(0)>
j−1 z

(0)
j−1

)
(
d
(0)>
j−1 v

(0)
j

)
...(

r
(T)>
j−1 z

(T)
j−1

)
(
d
(T)>
j−1 v

(T)
j

)

 ,

Similarly, for scaling,[
c

(0)
j · · · c

(T)
j

]
= Cj−1 + diag(αj)Dj−1

=

[
c

(0)
j−1 · · · c

(T)
j−1

]
+

[
α

(0)
j d

(0)
j−1 · · · α

(T)
j d

(T)
j−1.

]
In summary, mBCG is therefore able to perform all solve operations in batch,

which enables it to use GPU parallelism.

To compute the Lanczos tridiagonal matrices that correspond to inputs

z(1), . . . , z(T), mBCG adapts a technique from Saad [2003]. From Observation 2.1,

the diagonal and subdiagonal entries of T(1), . . . ,T(T) are simple deterministic

transforms of the αj and βj coefficients from mBCG. The final three lines in

red in Algorithm 3.1 use the αj and βj coefficients to iteratively compute the

Lanczos matrices from Observation 2.1. Notably, these matrices can be formed

with O(T) extra computation, and we are able to avoid running the Lanczos

algorithm.

61

3.2.2 Runtime and Space

As shown above, we are able to approximate all training terms from a single call

to mBCG. These approximations improve with the number of mBCG iterations.

Each iteration requires one matrix multiplication with K̂XX and element-wise

operations on N × T matrices. Therefore, J iterations of mBCG requiresO(NT)

space and O(J Ξ(K̂XX)) time, where Ξ(K̂XX) is the time to multiply K̂XX by a

N × (T + 1) matrix. This takes O(N2T) time with a standard matrix. It is worth

noting that this is a lower asymptotic complexity than standard Cholesky-based

training, which is O(N3). Therefore, BBMM offers a computational speedup for

exact GPs. As we will show in Section 3.4, this time complexity can be further

reduced with structured data or sparse GP approximations.

After using mBCG to produce the solves and tridiagonal matrices, recover-

ing the three training terms takes little additional time and space. K̂−1
XXy re-

quires no additional computation because it is the first output of the algorithm.

The Tr(K̂−1
XX

∂K̂XX

∂θ
) estimate is the inner product of the K̂−1

XXz(i) solves with the

∂K̂XX

∂θ
[z(1) , . . . , z(T)] vectors. This only requires an additional Ξ(∂K̂XX

∂θ
) +O(NT)

time and O(NT) space.1 Computing log |K̂XX| dominates the post-mBCG run-

ning time; however, it is negligible assuming J � N iterations of mBCG. To

compute the log determinant estimate, we must compute e(1)> log T(i)e(1) for

each i, which requires eigendecomposing the T(i) matrices. This costs O(TJ2)

time,2 which again is significantly less than the running time of mBCG.

1We assume that Ξ(∂K̂XX

∂θ) ≈ Ξ(K̂XX), which is true for exact GPs and GP approximations.
2By exploiting tridiagonal structure.

62

3.3 Preconditioning

While each iteration of mBCG performs large parallel matrix × matrix opera-

tions, the iterations themselves are sequential. A natural goal for better utilizing

hardware is to trade off fewer sequential steps for slightly more effort per step.

We accomplish this goal using preconditioning [e.g. Demmel, 1997, Saad, 2003,

Van der Vorst, 2003, Golub and Van Loan, 2012], which introduces a matrix P to

solve the related linear system

(
P̂−

1
2 K̂XXP̂−

1
2

)
C = P̂−

1
2

[
y, , z(1), , . . . , z(T)

]
. (3.3)

instead of K̂−1
XX

[
y, , z(1), , . . . , z(T)

]
. Both systems are guaranteed to have the

same solution, but the preconditioned system’s convergence depends on the

conditioning of P̂−
1
2 K̂XXP̂−

1
2 rather than that of K̂XX. Despite the matrix square

roots in Eq. (3.3), preconditioned CG/mBCG only need access to P̂ and its in-

verse P̂−1 (see Algorithm 2.3).

3.3.1 Modifying mBCG for Preconditioning

We have to make some special adjustments to BBMM algorithm in order to use

preconditioning. In particular, the input to the preconditioned mBCG algorithm

should be the vectors

[
y, z(1), · · · , z(T)

]
, z(i) ∼ N

[
0, P̂

]
, (3.4)

which produces the solves

K̂−1
XX

[
y, z(1), · · · , z(T)

]
, z(i) ∼ N

[
0, P̂

]
.

63

The difference between Eq. (3.4) and the original (non-preconditioned) input

(Eq. (3.1)) is that the z(i) probe vectors have covariance E
[
z(i)z(i)>

]
= P̂ (rather

than unit variance). To understand why this is the case, recall from Section 3.2

that our log determinant estimate is given by:

log
∣∣∣K̂XX

∣∣∣ ≈ E
z(i)∼N [0,I]

[
z(i)>Q(i)

(
log T(i)

)
Q(i)>z(i)

]
,

If we precondition mBCG with P̂, then the T(i) matrices will correspond to the

preconditioned system (P̂−
1
2 K̂XXP̂−

1
2) and preconditioned probe vectors (P̂−

1
2 z(i)).

Consequentially, the stochastic Lanczos quadrature estimate will return

log
∣∣∣P̂− 1

2 K̂XXP̂−
1
2

∣∣∣ ≈ E
z(i)∼N [0,P̂]

[(
z(i)>P̂−

1
2

)
Q(i)

(
log T(i)

)
Q(i)>

(
P̂−

1
2 z(i)

)]
. (3.5)

By using z(i) ∼ N [0, P̂] as probe vectors: the resulting preconditioned vectors

P̂−
1
2 z(i) will be samples from N [0, I], which is the requirement for a stochastic

trace estimate.

Estimating log |K̂XX| from preconditioned mBCG. To compute log |K̂XX|

from Eq. (3.5), we note that

log
∣∣∣K̂XX

∣∣∣ = log
∣∣∣P̂− 1

2 K̂XXP̂−
1
2

∣∣∣+ log
∣∣∣P̂∣∣∣ .

We estimate the first term using stochastic Lanczos quadrature (Eq. (3.5)) on the

preconditioned system, and then “correct” this estimate with the log determi-

nant of the preconditioner. Note that this will still be an unbiased estimate of

log |K̂XX| if we can exactly compute log |P̂|.

Estimating Tr(K̂−1
XX(∂K̂XX/∂θ)) from preconditioned mBCG. To estimate

Tr(K̂−1
XX(∂K̂XX/∂θ)) from the new probe vectors z(i) ∼ N [0, P̂], we note that

64

we can form a stochastic trace estimate from the following:

Tr

(
K̂−1

XX

∂K̂XX

∂θ

)
= Tr

(
K̂−1

XX

∂K̂XX

∂θ
E

z(i)∼N [0,P̂]

[
P̂−1z(i)z(i)>

])

≈ E
z(i)∼N [0,P̂]

[(
z(i)K̂−1

XX

)(∂K̂XX

∂θ
P̂−1z(i)

)]
. (3.6)

The only differences between Eq. (3.6) and the non-preconditioned trace esti-

mate in Eq. (3.2) are (1) we use z(i) ∼ N [0, P̂] as probe vectors, and (2) the

derivative term ∂K̂XX/∂θ is applied to the vectors P̂−1z(i).

Requirements of mBCG preconditioners. Based on the above discussion, we

observe three requirements of any preconditioner P̂ for mBCG. First, in order

to ensure that preconditioning operations do not dominate the running time of

Algorithm 3.1, the preconditioner should afford roughly linear-time solves and

linear space. Second, we should be able to efficiently compute the log determi-

nant of the preconditioner log |P̂| to “correct” the log determinant estimate in

Eq. (3.5). Finally, we should be able to efficiently sample probe vectors z(i) from

the distribution N [0, P̂].

3.3.2 The Partial Pivoted Cholesky Preconditioner for mBCG

For one possible preconditioner, we turn to the partial pivoted Cholesky de-

composition (as introduced in Section 2.2.3). The pivoted Cholesky algorithm

allows us to compute a rank-R approximation (R � N) of the training kernel

matrix KXX ≈ L̄RL̄>R. Our mBCG preconditioner will be

P̂R = L̄RL̄>R + σ2
obsI, (3.7)

65

where σ2
obs is the Gaussian likelihood’s noise term. Intuitively, if L̄RL̄>R is a good

low-rank approximation of KXX, then (L̄RL̄>R + σ2
obsI)−1K̂XX ≈ I.

Unlike the standard Cholesky decomposition, which computes an exact fac-

torization inN iterations, the partial pivoted Cholesky decomposition produces

a rank-R factorization in R � N iterations, and therefore does not share its

asymptotic concerns. Moreover, it meets the requirements outlined above:

Observation 3.1 (Properties of the rank-R pivoted Cholesky preconditioner).

(1) L̄R can be computed in O(row K(K̂XX)R2) time, where row K(K̂XX) is the

time required to retrieve a single row of K̂XX (see Section 2.2.3).

(2) Storing L̄R requires O(NR) memory.

(3) Linear solves with P̂R = L̄RL̄>R + σ2
obsI can be performed in O(NR2) time using

the Woodbury matrix formula.3

(4) The log determinant of P̂R can be computed in O(NR2) time using the matrix

determinant lemma.4

(5) Samples fromN [0, P̂R] can be drawn withO(NR2) computation using the repa-

rameterization trick [Kingma and Welling, 2014].5

3The Woodbury matrix formula is a O(R2N) formula for “rank-R plus diagonal” solves:(
L̄RL̄>R + σ2

obsI
)−1

b = σ−2obsb− σ−4obs L̄R
(
I− σ−2obsL̄

>
RL̄R

)−1
L̄>Rb.

4The matrix determinant lemma is an analog of the Woodbury formula for determinants:

log |L̄RL̄>R + σ2
obsI| = log |I− σ−2obsL̄

>
RL̄R|+ 2N log σobs.

5Draw standard normal vectors ε′1 ∈ RR and ε′2 ∈ RN . By the reparameterization trick,(
L̄Rε

′
1 + σobsε

′
2

)
is a sample from N [0, (L̄RL̄>R + σ2

obsI)].

66

Assuming R � N (for example, R ≈ 5), computing and using P̂ is less expen-

sive than a single matrix multiplication with K̂XX. While the R ≈ 5 iterations

required to compute L̄R are inherently sequential, we note that this is far fewer

iterations than the standard Cholesky factorization.

Perhaps more important than its runtime are its convergence properties. In

general, the low-rank nature of P̂ is an ideal choice for many kernel matrices

with rapidly decaying spectra. Such kernels tend to be horribly conditioned yet

are well approximated by low rank matrices. We empirically demonstrate in

Section 3.5 that P̂ significantly improves the convergence of mBCG for several

kernels. Below we discuss theoretical guarantees for certain classes of kernels.

Theoretical analysis. Kernels with rapidly decaying eigenvalues (i.e. kernels

that are well approximated by low-rank matrices) will see the largest improve-

ments from the partial pivoted Cholesky preconditioner. Based on the work of

Harbrecht et al. [2012], we can prove the following lemma about kernel condi-

tion numbers:

Lemma 3.1. Let L̄R be the rank-R pivoted Cholesky factor of kernel matrix KXX ∈

RN×N . If the first R eigenvalues λ1, . . ., λR of KXX satisfy

4iλi ≤ O
(
e−Bi

)
, i ∈ {1, . . . , R}, (3.8)

for some B > 0, then the condition number κ(P̂−1K̂XX) , ‖P̂−1
k K̂XX‖2‖K̂−1

XXP̂k‖2

satisfies the following bound:

κ
(
P̂−1K̂XX

)
≤
(

1 +O
(
σ−2

obsNe
−BR))2

where P̂ =
(
L̄RL̄>R + σ2

obsI
)

and K̂XX = (KXX + σ2
obsI).

67

(See Appendix A.1 for a proof.) It so happens that the exponentially-decaying

eigenvalue assumption actually holds for certain classes of kernels. For exam-

ple, the eigenvalues of univariate RBF kernels are guaranteed to decay super-

exponentially (see Appendix A.2). In our experiments we observe improved con-

ditioning for other kernels as well (Section 3.5).

Using Lemma 3.1, we can prove the following statements about the

solves/log determinant estimates from preconditioned mBCG:

Theorem 3.1 (Convergence of solves from preconditioned mBCG). Let KXX ∈

RN×N be a N ×N kernel that satisfies the eigenvalue condition of Eq. (3.8), and let L̄R

be its rank-R pivoted Cholesky factor. After J iterations of mBCG with preconditioner

P̂ = (L̄RL̄>R +σ2
obsI), the difference between cJ and true solution K̂−1

XXy is bounded by:

∥∥∥K̂−1
XXy − cJ

∥∥∥
K̂XX

≤
[

1

1 +O(σ2
obse

RB/N)

]J ∥∥∥K̂−1
XXy

∥∥∥
K̂XX

,

where K̂XX = (KXX + σ2
obsI) and B > 0 is a constant.

Theorem 3.2 (Convergence of log determinants from preconditioned mBCG).

Assume KXX ∈ RN×N satisfies the eigenvalue condition of Eq. (3.8). Suppose we

estimate Γ ≈ log |P̂−1K̂XX| using Eq. (3.5) with:

• J ≥ O
[
(1 + σ−2

obsNe
−BR) log

(
(1 + σ−2

obsNe
−BR)/ε

)]
iterations of mBCG (for

some constant B > 0), and

• T ≥ 32
ε2

log
(

2
δ

)
random z(i) ∼ N [0, P̂] vectors.

Then the error of the stochastic Lanczos quadrature estimate Γ is probabilistically

bounded by:

Pr
[∣∣∣log |P̂−1K̂XX| − Γ

∣∣∣ ≤ εN
]
≥ (1− δ) .

68

(See Appendix A.1 for proofs.) Theorem 3.1 implies that the mBCG solves—

used to compute both K̂−1
XXy and Tr(K̂−1

XX(∂K̂XX/∂θ))—will converge exponen-

tially quicker as the rank of the partial pivoted Cholesky decomposition in-

creases. Theorem 3.2 implies that the number of iterations needed to accurately

estimate log |P̂−1K̂XX| also decreases quickly as R increases. Furthermore, in

the limit as R → N we have that log |K̂XX| = log |P̂|. Since our calculation of

log |P̂| is exact, the final estimate of log |K̂XX|will have less stochasticity.

Related work. Cutajar et al. [2016] explore preconditioned conjugate gradi-

ents for GP training, using various sparse GP methods (as well as some classical

methods) as preconditioners. Bach [2013] uses the pivoted Cholesky decompo-

sition as a low-rank approximation to kernel matrices. However, Bach [2013]

treats this decomposition as an approximate training method, whereas we use

the decomposition primarily as a preconditioner and thus avoid any loss of ac-

curacy from the low rank approximation.

3.4 Programmability with BBMM

We have discussed how the BBMM framework is more hardware efficient than

existing training methods and avoids numerical instabilities with Lanczos. An-

other key advantage of BBMM is that it can easily be adapted to complex GP

models or structured GP approximations.

Indeed BBMM is blackbox by nature, only requiring a routine to perform

matrix-multiplications with the kernel matrix and its derivative. Here we pro-

vide examples of how existing GP models and scalable approximations can be

69

easily implemented in this framework. The implementations of many specialty

models require at most 50 lines of Python code.

3.4.1 GPyTorch’s LazyTensor Construct

In GPyTorch, we use the construct of a LazyTensor object (or lazily-evaluated

tensor) to represent kernel matrices KXX. A LazyTensor represents a (poten-

tially) structured matrix K ∈ RN×N that is defined through some ≤ O(N2) rep-

resentation r. As an example, a diagonal matrix K can be represented by its di-

agonal vector. Consequentially, the representation r for the DiagLazyTensor

class is simply a RN vector of diagonal entries.

Each LazyTensor sub-class defines a matmul(·) method (for perform-

ing K (B) for some matrix B) and a deriv(·, ·) method for computing

∂ Tr(A>KB)/∂r, where A and B are arbitrary matrices. The matmul(·)

method is used by mBCG, exploiting any structure of the LazyTensor for fast

matrix multiplication. The deriv(·, ·) function can be used to compute an

unbiased estimate of Eq. (2.7):

• The 1
T

∑T
i=1

(
z(i)>K̂−1

XX

)(
∂K̂XX

∂θ
z(i)
)

term, which approximates the trace

term in Eq. (2.7), can be rewritten as

1

T

∂ Tr((Z>K̂−1
XX)K̂XX(Z))

∂r

∂r

∂θ
,

where Z = [z(1), . . . , z(T)]. This can be computed by calling

deriv(K̂−1
XXZ, Z).

• The (y>K̂−1
XX)∂K̂XX

∂θ
(K̂−1

XXy) term in Eq. (2.7) can be rewritten as

∂(y>K̂−1
XX)K̂XX(K̂−1

XXy)

∂r

∂r

∂θ
,

70

which can be computed by calling deriv(K̂−1
XXy, K̂−1

XXy).

While all LazyTensor subclasses define matmul(·) and deriv(·, ·), the

superclass defines additional methods necessary for GP training, such as

• inv matmul(·) (for computing matrix solves K̂−1
XXy)

• logdet() (for computing the log determinant log |K̂XX|)

• inv quad logdet(·) (for simultaneously computing y>K̂−1
XXy and

log |K̂XX|).

Each of these methods runs the mBCG algorithm using the subclass’

matmul(·) method. Moreover, each method uses deriv(·,·) in conjunc-

tion with PyTorch’s autograd [Paszke et al., 2017] to compute the appropriate

derivatives. In GPyTorch, we use the inv quad logdet(·) method to com-

pute Eq. (2.6)—as it can compute all log likelihood and derivative terms with a

single mBCG call.

For standard GP regression (with no approximations), there is no ex-

ploitable structure for the kernel matrix. We therefore use the aptly named

NonLazyTensor, which simply represents an arbitrary matrix—i.e. r = KXX.

The matmul(·) and deriv(·, ·) routines are straightforward:

class NonLazyTensor(LazyTensor):
def __init__(self, matrix):

self.matrix = matrix

def _matmul(self, B):
return self.matrix @ B

def _deriv(self, A, B):
d(tr(AˆT K B)) / d(K) = A BˆT
return A @ B.transpose(-1, -2)

71

For a full GP code example that uses LazyTensors under the hood, see Ap-

pendix D.1 or http://github.com/cornellius-gp/gpytorch.

3.4.2 Examples of LazyTensors and Specialty GP Models

Bayesian linear regression can be viewed as GP regression with the special

kernel matrix

K
(lin)
XX = XX>.

A matrix multiply with this kernel against an N × T matrix B, (XX>)V re-

quires O(TND) time. Therefore, BBMM requires O(JTND) time, and is exact

in O(TND2) time. This running time complexity matches existing efficient al-

gorithms for Bayesian linear regression, with no additional derivation.

In GPyTorch’s, the LinearKernel class outputs a RootLazyTensor:

class RootLazyTensor(LazyTensor):
""" The output of gpytorch.kernels.LinearKernel """
def __init__(self, X):

self.X = X # X is a (N X D) matrix

def _matmul(self, B):
If B is a (N X T) matrix, this is O(T N D)
return (self.X @ self.X.transpose(-1, -2) @ B

def _deriv(self, A, B):
d(tr(AˆT K B)) / d(X) = A BˆT X + B AˆT X
if A and B are (N X T), this is O(T N D)
return A @ B.transpose(-1, -2) @ self.X + \

B @ A.transpose(-1, -2) @ self.X

Note that the RootLazyTensor’s matmul(·) function encodes the efficient

MVM necessary for O(JTND) inference.

72

http://github.com/cornellius-gp/gpytorch

Multi-task Gaussian processes [Bonilla et al., 2008] use a kernel function that

combines covariance between inputs x,x′ and covariance between tasks c, c′:

k(input) (x,x′) k(task) (c, c′). Constructing the kernel matrix over all training inputs

X and tasks [1, C] results in Kronecker structure:

K
(multi)
XX,cc = K

(task)
XX ⊗K(task)

cc ,

where ⊗ represents the Kronecker product. Though K
(multi)
XX,cc is a (NC) × (NC)

matrix (forC tasks), exploiting the Kronecker structure results inO(NC2+N2C)

matrix-vector multiplications. (This can be reduced further if K
(input)
XX is struc-

tured and affords fast multiplications.) Thus, multi-task Gaussian processes

can be implemented simply by using a Kronecker matrix multiplication routine,

with a time complexity that matches state-of-the-art [Bonilla et al., 2008].

The MultitaskKernel object in GPyTorch returns a

KroneckerProductLazyTensor. (The forward and backward pass methods

are adopted from Saatçi [2012].) Here, we assume that the K
(input)
XX and K

(task)
cc

matrices are themselves represented as LazyTensors.

73

class KroneckerProductLazyTensor(LazyTensor):
""" The output of gpytorch.kernels.MultitaskKernel """
def __init__(self, K_input, K_task):

self.K_input = K_input # a (N X N) LazyTensor
self.K_task = K_task # a (C X C) LazyTensor

def _matmul(self, B):
Kronecker prod, adapted from Saatci, 2012
O(N Cˆ2 + N Cˆ2), less if inputs are structured
B is (CN X T)
out = B.clone().view(self.K_task.size(-1), -1) # C X NT
out = self.K_task._matmul(out)
out = out.view(self.K_task.size(-1), -1, B.size(-1))
out = out.transpose(-3, -2) # N X C X T
out = out.view(self.K_input.size(-1), -1) # N X CT
out = self.K_input._matmul(out)
out = out.view(-1, B.size(-1)) # CN X T
return out

def _deriv(self, A, B):
Kronecker deriv
O(N Cˆ2 + N Cˆ2), less if inputs are structured
See Saatci, 2012, or github.com/cornellius-gp/gpytorch

Importantly, implementing multitask GPs in GPyTorch simply requires chang-

ing the kernel module (which changes the LazyTensor)—no additional im-

plementation is required. This is demonstrated by the code example in Ap-

pendix D.2.

Compositions of kernels can often be handled automatically. For example,

given a BBMM routine for K1,K2,K3, we can automatically perform (K1K2 +

K3)B = K1(K2B) + K3B. To handle the sum of two kernels, we can define

a SumLazyTensor that takes two LazyTensors and distributes their matrix-

multiplication. For the product of kernels, one can use the method of Gardner

et al. [2018b].

74

class SumLazyTensor(LazyTensor):
def __init__(self, *Ks):

self.Ks = Ks # list of (N X N) LazyTensors

def _matmul(self, B):
return sum(K._matmul(B) for K in self.Ks)

def _deriv(self, A, B):
return [K._deriv(A, B) for K in self.Ks]

Sparse Gaussian Process Regression (SGPR) [Titsias, 2009] and many other

sparse GP techniques [Quiñonero-Candela and Rasmussen, 2005, Snelson and

Ghahramani, 2006, Hensman et al., 2013] use the subset of regressors (SoR) ap-

proximation for the kernel (see Section 2.1.5):

K
(SGPR)
XX = KXZK−1

ZZKZX.

Performing a matrix-matrix multiply with this matrix requiresO(TNM +TM3)

time by distributing the vector multiply and grouping terms correctly. This

computation is asymptotically faster than the O(NM2 + M3) time required by

Cholesky based inference. Augmenting the SoR approximation with a diag-

onal correction, e.g. as in FITC [Snelson and Ghahramani, 2006], is similarly

straightforward. (We omit the code example here: see http://github.com/

cornellius-gp/gpytorch.)

KISS-GP [Wilson and Nickisch, 2015]—see Section 2.1.6—also known as SKI,

is an inducing point method designed to provide fast matrix vector multiplies

(MVMs) for use with Krylov subspace methods. KISS-GP is thus a natural can-

didate for BBMM and can benefit greatly from hardware acceleration. The KISS-

GP approximation applied to the training covariance matrix gives us

K
(KISS-GP)
XX = W>

XKZZWX.

75

http://github.com/cornellius-gp/gpytorch
http://github.com/cornellius-gp/gpytorch

where W is a O(N) sparse interpolation matrix and KZZ has Toeplitz struc-

ture for O(M logM) matrix-vector multiplies. Thus KISS-GP provides O(TN+

TM logM) matrix-matrix multiplies. (We omit the code example here.)

3.4.3 LazyTensors and Pivoted Cholesky Preconditioning

In order to compute the partial pivoted Cholesky preconditioner for arbitrary

LazyTensors, we need routines for (1) computing the row of a matrix, and

(2) computing the matrix diagonal. Each LazyTensor can optionally imple-

ment its own get row(·) method; however, a simple default implementation

uses the matmul function: k(i) = KXXei (ei is the ith unit vector). There is

no standard default for the diagonal() function; however, they tend to be

straightforward to write. We include some examples for various LazyTensor

sub-classes below.

For NonLazyTensor
def diagonal(self):

return K.diagonal(dim1=-1, dim2=-2)

For RootLazyTensor
def diagonal(self):

diag(X XˆT) = (X \cdot X) e_1
where \cdot is elementwise multiplication
return self.X.pow(2).sum(dim=-1)

For KroneckerProductLazyTensor
def diagonal(self):

A neat trick: the KP-diagonal is a flattened
outer product of the K_input/K_task diagonals
return torch.ger(

self.K_input.diagonal(), self.K_task.diagonal(),
).view(-1)

For SumLazyTensor
def diagonal(self):

return sum(K.diag for K in self.Ks)

76

3.5 Results

We evaluate the BBMM framework, demonstrating:

(1) the BBMM inference engine provides a substantial speed benefit over

Cholesky based inference and standard MVM-based CG inference, espe-

cially for GPU computing;

(2) BBMM achieves comparable or better test error than Cholesky inference;

and

(3) preconditioning provides a substantial improvement in the efficiency of

our approach.

Baseline methods. We test BBMM on three types of GPs: (1) Exact GP mod-

els; (2) SGPR models [Titsias, 2009]; and (3) KISS-GP models with deep ker-

nels [Wilson and Nickisch, 2015, Wilson et al., 2016a]. For Exact GPs and SGPR

models, we compare BBMM against Cholesky-based training (as implemented

in GPFlow [Matthews et al., 2017]). Since KISS-GP is not intended for Cholesky

inference, we compare BBMM to the inference procedure of Dong et al. [2017].

This procedure differers from BBMM in that it computes K̂−1
XXy without a pre-

conditioner and computes log |K̂XX| and its derivative with the Lanczos algo-

rithm.

Datasets. We test Exact GPs on five datasets from the UCI dataset repository

[Asuncion and Newman, 2007] that have up to N = 3,500 training examples.

We test SGPR on larger datasets (N up to 50,000). For KISS-GP we test five large

UCI datasets (N up to 515,000).

77

Autompg
N=392

Airfoil
N=1503

Wine
N=1599

Gas
N=2565

Skillcraft
N=3338

0

10

20

30

S
p

ee
d

u
p

F
a
ct

o
r

Speedup over Cholesky CPU (Exact GP)

1x Speedup

Cholesky (GPU)

BBMM (GPU)

PolTele
N=15k

Elevators
N=17k

Kin40K
N=40k

Protein
N=45k

KEGG
N=49k

0

2

4

6

8

10

S
p

ee
d

u
p

F
a
ct

o
r

Speedup over Cholesky CPU (SGPR)

1x Speedup

Cholesky (GPU)

BBMM (GPU)

Kin40K
N=40k

Protein
N=45k

KEGG
N=49k

Song
N=515k

Buzz
N=583k

0

10

20

30

S
p

ee
d

u
p

F
ac

to
r

Speedup over Dong et al. (2017) (DKL+KISS-GP)

1x Speedup

Dong et al. (2017) (GPU)

BBMM (GPU)

Figure 3.1: Speedup of GPU-accelerated GP training. BBMM is in blue; com-
peting GPU methods are in gray. Left: Exact GP speedup over CPU Cholesky-
based training. Middle: SGPR [Titsias, 2009, Hensman et al., 2013] speedup
over CPU Cholesky-based training. Right: KISS-GP+DKL [Wilson and Nick-
isch, 2015, Wilson et al., 2016a] speedup over CPU training of Dong et al. [2017].

Experiment details. All methods use the Adam optimizer [Kingma and Ba,

2015] with identical hyperparameters. In BBMM experiments we use rank R=5

pivoted Cholesky preconditioners unless otherwise stated. We use a maximum

of J = 20 iterations of CG for each solve, and we use T = 10 probe vectors

filled with Gaussian random variables to estimate the log determinant and trace

terms. SGPR models use M = 300 inducing points. KISS-GP models use M =

10,000 inducing points and the deep kernels described in [Wilson et al., 2016a].

All speed experiments are run on an Intel Xeon E5-2650 CPU and a NVIDIA

Titan XP GPU.

78

Autompg
N=392

Airfoil
N=1503

Wine
N=1599

Gas
N=2565

Skillcraft
N=3338

0

1

2

3

4

T
es

t
M

A
E

Exact GP Errors (RBF)

Cholesky

BBMM

Autompg
N=392

Airfoil
N=1503

Wine
N=1599

Gas
N=2565

Skillcraft
N=3338

0

1

2

3

4

T
es

t
M

A
E

Exact GP Errors (Matern 5/2)

Cholesky

BBMM

PolTele
N=15k

Elevators
N=17k

Kin40K
N=40k

Protein
N=45k

KEGG
N=49k

0.0

0.2

0.4

0.6

T
es

t
M

A
E

SGPR Errors (Matern 5/2)

Cholesky

BBMM

Figure 3.2: Predictive error comparison of mBCG versus Cholesky (mean aver-
age error). The left two plots compare errors of Exact GPs with RBF and Matérn-
5/2 kernels, and the final plot compares error of SGPR models with a Matérn-
5/2 kernel.

Speed comparison. Fig. 3.1 shows the speedup obtained by GPU-accelerated

BBMM over CPU-based training methods (Cholesky for Exact/SGPR, Dong

et al. [2017] for KISS-GP). BBMM is up to 32 times faster than Exact/KISS-GP

CPU training, and up to 10 times faster than SGPR CPU training. The largest

speedups occur on the biggest datasets, since smaller datasets experience larger

GPU overhead. Notably, BBMM achieves a much larger speedup than GPU ac-

celerated Cholesky methods (Exact, SGPR), which only achieve a roughly 4×

speedup. This result underscores the fact that Cholesky methods are not as

well suited for GPU acceleration. For KISS-GP models, BBMM performs better

than the GPU-accelerated method of Dong et al. [2017]. This speedup is because

79

15 20 25 30
0.0

0.1

0.2

0.3

0.4

0.5 mBCG (float)
Cholesky (float)
Cholesky (double)

CG Iterations Performed

R
es

id
ua

l E
rr

or
Figure 3.3: Solve error of mBCG versus Cholesky.

BBMM is able to calculate all inference terms in parallel, while Dong et al. [2017]

computes the terms in series.

Predictive error comparison. Computing predictive means requires the solve

K̂−1
XXy. Therefore, the PCG algorithm can be used to compute this term with

preconditioning and GPU acceleration. In Fig. 3.2 we compare the mean average

error (MAE) of BBMM models versus Cholesky models. We demonstrate results

using both the RBF kernel and a Matérn-5/2 kernel. Across all datasets, our

method is at least as accurate in terms of final test MAE. On a few datasets (e.g.

Gas, Airfoil, and Wine with Exact GPs) BBMM even improves final test error.

The Cholesky decomposition is known to have numerical issues resulting from

extremely small eigenvalues. For example, Cholesky methods frequently add

noise (or “jitter”) to the diagonal of the kernel matrix for numerical stability.

It is possible to reduce the numerical instabilities with double precision (see

Fig. 3.3); however, this requires an increased amount of computation. BBMM

on the other hand avoids adding this noise, without requiring double precision.

Preconditioning. To demonstrate the effectiveness of preconditioning, we

train deep RBF and deep Matérn-5/2 kernels on two datasets (Protein and

80

20 40 60 80 100
CG Iterations

10−3

10−1

S
ol

ve
E

rr
or

Protein - Deep RBF Kernel

Rank 0 (No Precond.)

Rank 2

Rank 5

Rank 9

20 40 60 80 100
CG Iterations

10−4

10−2

100

S
ol

ve
E

rr
or

KEGG - Deep Matern-5/2 Kernel

No Preconditioner

Rank 2

Rank 5

Rank 9

0 25 50 75 100 125 150
Test Time (s)

0

2

T
es

t
M

A
E

Protein - Wall clock time

No Preconditioner

Rank 5 Preconditioner

0 25 50 75 100 125
Test Time (s)

0

10

20

T
es

t
M

A
E

KEGG - Wall clock time

No Preconditioner

Rank 5 Preconditioner

Figure 3.4: Effect of partial pivoted Cholesky preconditioning. Top: mBCG
residual ‖K̂XXc − y‖/‖y‖ as a function of mBCG iterations. Bottom: Test set
mean average error (MAE) as a function of mBCG wall-clock time. Solves are
computed using no preconditioner, rank R = 2, R = 5, and R = 9 pivoted
Cholesky preconditioners using deep RBF and deep Matérn kernels. On the 2
datasets tested (Protein and KEGG), preconditioning accelerates convergence.

KEGG) and evaluate the solve error of mBCG. We measure the relative residual

‖K̂XXc − y‖/‖y‖ as a function of the number of mBCG iterations performed.

We compare using no preconditioner, as well as rank R = 2, R = 5, and R = 9

partial pivoted Cholesky preconditioners. The results are in the top of Fig. 3.4.

As expected based on our theoretical intuitions, increasing the rank of the pre-

conditioner substantially reduces the number of mBCG iterations required to

achieve convergence.

In Fig. 3.4 (bottom), we confirm that these more accurate solves indeed result

in faster training. We plot the test MAE of preconditioned/non-preconditioned

mBCG as a function of wall-time.6 We observe that a rank-5 preconditioner is

indeed sufficient—the solves converge up to 5 times faster than without precon-

6Wall-clock time is varied by changing the number of CG iterations.

81

ditioning. Consequentially, we recommend always using the partial pivoted

Cholesky preconditioner with BBMM. It has virtually no wall-clock overhead

and rapidly accelerates convergence.

3.6 Discussion

In this chapter, we have presented a novel algorithm for Gaussian process train-

ing (BBMM) based on blackbox matrix-matrix multiplication routines with ker-

nel matrices. Below we discuss our findings and discuss extensions of BBMM

that will be explored in future chapters.

Avoiding the Cholesky decomposition. An important takeaway of this chap-

ter is that it is beneficial to avoid the Cholesky decomposition for GP training,

even when no structured approximations are made. We will explore the exact

GP setting in more detail in Chapter 6 and further demonstrate the computa-

tional benefits of BBMM.

The Cholesky decomposition performs a large amount of computation to

get a linear solve when fast iterative methods suffice. Ultimately, the Cholesky

decomposition of a full matrix takes O(N3) time while CG takes O(N2) time.

Indeed, as shown in Fig. 3.3, CG may even provide better linear solves than the

Cholesky decomposition.

Non-Gaussian likelihoods. When GP models are used with non-conjugate

likelihoods (e.g. for classification or heavy-tailed noise models), we cannot com-

pute the GP’s marginal log likelihood (i.e. Eqs. (2.6) and (2.7) do not apply).

82

We must instead use variational approximations of the marginal log likelihood,

which require a different set of training and inference equations. We will discuss

how MVM techniques can be applied to this problem in Chapter 5.

Computing predictive distributions. The focus of this chapter has been opti-

mizing the GP marginal log likelihood. The next chapter will focus on making

predictions after a GP has been trained. The equations for computing predictive

distributions—Eqs. (2.4) and (2.5)—require matrix solves. In the next chapter,

we will introduce a MVM based method that pre-computes and caches most of the

required CG computation.

83

CHAPTER 4

GAUSSIAN PROCESS PREDICTIONS VIA LANCZOS VARIANCE

ESTIMATES

4.1 Introduction

Applying a Gaussian process model to previously-unseen test data returns a

predictive distribution rather than a point prediction. Gaussian process predictive

distribution are non-parametric and naturally adapt to the amount of training

data. As a result, these predictions tend to be well-calibrated—even for data

points that lie far away from previously-seen training data [Rasmussen and

Williams, 2006, Wilson, 2014]. This property is crucial for applications where

incorrect predictions could have catastrophic consequences, such as in medicine

[Schulam and Saria, 2017] or large-scale robotics [Deisenroth et al., 2015].

This non-parametric formulation unfortunately comes with a computational

downside. Computing predictions with a GP requires performing linear solves

with the N ×N training covariance matrix (see Eqs. (2.4) and (2.5)). BBMM and

recent advances in inducing point methods can be used to reduce some of these

computational requirements. Using a simple caching strategy (described in the

next section), predictive means can be computed in O(N) time. This computa-

tion can be reduced toO(1) when used in conjunction with Kernel Interpolation

for Scalable Structured GP models (KISS-GP, see Section 2.1.6).

Unfortunately, predictive uncertainties remain a computational bottle-

neck, even with BBMM. The predictive variance Var∗ (x∗) requires computing

K̂−1
XXkXx∗ (see Eq. (2.5)), which depends on the test point x∗ and therefore cannot

84

be computed upfront. Matching the complexity of predictive mean inference

without sacrificing accuracy has remained an open problem. The majority of

this chapter is therefore dedicated to reducing the computational requirements

of predictive variances.

We provide a matrix-vector multiplication (MVM) solution based on the

tridiagonalization algorithm of Lanczos [1950]. We express the predictive co-

variance between x∗ and x∗′ as k>Xx∗C kXx∗ , where C ≈ K̂−1
XX is a low-rank

N × N approximation. Using the Lanczos algorithm, we can efficiently form

this low-rank decomposition using J � N matrix-vector multiplications with

K̂XX. After this one-time upfront computation, all variances can be computed

in linear time – O(JN) – per (co)-variance entry. When used in conjunction with

KISS-GP, this complexity can be further reduced to constant time, and posterior

samples can be drawn in linear time.

We refer to this method as LanczOs Variance Estimates, or LOVE for short.

LOVE has the lowest asymptotic complexity for computing predictive (co)-

variances with GPs. We empirically validate LOVE on seven datasets and find

that it consistently provides substantial speedups over existing methods without

sacrificing accuracy. Variances and samples are accurate to within four decimals,

and can be computed up to 18,000 times faster.

85

4.2 Motivation

Eq. (2.4) and Eq. (2.5) describe how to compute predictive means and (co)-

variances (restated below, assuming a prior mean of 0 for brevity):

µ∗ (x∗) = k>Xx∗K̂
−1
XXy (4.1)

Cov∗ (x∗,x∗′) = k(x∗,x∗′)− k>Xx∗K̂
−1
XXkXx∗′ + σ2

obs. (4.2)

The terms in blue only depend on the training data. If we are making a sin-

gle prediction with a GP model, then both of these terms only require a single

call to conjugate gradients (K̂−1
XXk>Xx∗). However, if we are making predictions

on thousands of test points, these repeated CG calls may become prohibitively

expensive, even when using the mBCG algorithm to parallelize the solves. Our

goal is to pre-compute and cache the most computationally intensive parts of these

equations. After this pre-computation, subsequent predictions ideally should

be computationally cheap—i.e. O(N) or less.

4.2.1 Computing Predictive Means

Before discussing predictive (co)-variances, which will be the primary focus

of this chapter, we will first discuss a pre-computation strategy for predictive

means: Since the K̂−1
XXy , a term only depends on training data, it can be

cached and re-used for all predictive means. Each subsequent predictive mean

is simply the inner product between the kXx∗ vector and the pre-computed a

vector, which in general takes O(N) time.

This cost can be reduced even further for KISS-GP models, as discussed in

Section 2.1.6 and [Wilson et al., 2015]. Recall that KISS-GP approximates the

86

training and test covariances as:

k̃Xx∗ = W>
XKZZwx∗ , K̃XX = W>

XKZZWX,

where KZZ ∈ RM×M is the Toeplitz inducing kernel matrix, WX ∈ RM×N is the

sparse interpolation for training points X, and wx∗ ∈ RM is the sparse interpo-

lation for x∗. Plugging these approximations into Eq. (4.1) gives us

µ∗ (x∗) = w>x∗KZZWX(W>
XKZZWX + σ2

obsI)−1y

a′

.

where again the blue terms only depend on training data. After pre-computing

the a′ vector, all subsequent means are the inner product between a′ and the

O(1) sparse w∗x vector. These computations are O(1).

4.2.2 Computing (Co)-Variances without Pre-Computation

The predictive (co)-variances are more computationally challenging, as the only

term in Eq. (4.2) that does not depend on test data is K̂−1
XX. A common pre-

computation is to form the Cholesky factorization LL> = K̂XX (O(N3) time,

O(N2) memory). After factorization, all subsequent solves take O(N2) time.

However, this cubic dependence on N and quadratic memory may be infeasible

for N ≥ 10,000.

It is possible to obtain some computational savings when using inducing

point methods. For example, if we replace kXx∗ and K̂XX with their correspond-

ing KISS-GP approximations in Eq. (4.2), then we have:

Cov∗ (x∗,x∗′) ≈ σ2
obs + k(x∗,x∗′)

−w>x∗KZZWX

(
W>

XKZZWX + σ2
obsI
)−1

W>
XKZZ

C

wx∗′ . (4.3)

87

C, the braced portion of Eq. (4.3), does not depend on the test points x∗i , x∗j and

therefore can be pre-computed during training. The primary cost of this pre-

computation is the M solves with (W>
XKZZWX + σ2

obsI): one for each column

vector in W>
XKZZ, each of which takes O(N +M logM) time with CG (see Sec-

tion 2.1.6 or Wilson and Nickisch [2015]). The total time for this pre-computation

is thereforeO(MN +M2 logM) (the time for M solves). After pre-computation,

Eq. (4.3) becomes

Cov∗ (x∗,x∗′) ≈ kx∗x∗′ −w>x∗ C wx∗′ + σ2
obs (4.4)

As wx∗ contains only four nonzero elements, the inner product of w∗i with C

takes O(M) time. Thus predictive covariances with Eq. (4.4) are O(M) after

pre-computation.

Although this technique offers computational savings over the Cholesky

method, the quadratic dependence onM in the pre-computation phase is a com-

putational bottleneck. In contrast, all other operations with KISS-GP require at

most linear storage and near-linear time. Indeed, one of the hallmarks of KISS-

GP is the ability to use a very large number of inducing points M = Θ(N) so

that kernel computations are nearly exact.

4.3 LanczOs Variance Estimates (LOVE)

We propose to overcome these limitations through an altered pre-computation

step. In particular, we can approximate K̂XX in Eq. (4.2) as a low rank matrix.

Letting R be a J ×N matrix such that R>R ≈ K̂−1
XX, we rewrite Eq. (4.2) as:

Cov∗ (x∗,x∗′) = k(x∗,x∗′)− (RkXx∗)
>(RkXx∗′) + σ2

obs (4.5)

88

Algorithm 4.1: LanczOs Variance Estimates (LOVE). Terms in blue
only depend on training data.

Input : kXx∗ , kXx∗′ – covariance vectors for x∗, x∗′

k(x∗,x∗′) – prior covariance between x∗, x∗′

mvm K̂XX() – func. that performs MVMs with K̂XX

J – number of Lanczos iterations
Output: Approximate predictive covariance Cov∗ (x∗,x∗′).

if R has not previously been computed then
Q,T← lanczosJ(mvm K̂XX, kXx∗)

// J iter. of Lanczos w/ matrix K̂XX and probe vec.

kXx∗

LT← cholesky factor(T)
R← trinagular solve(Q>,LT)

end
// R ∈ RJ×N, J � N.

return k(x∗,x∗′)− (k>Xx∗R
>)(RkXx∗′)

Variance computations with Eq. (4.5) take O(JN) time.

An MVM-based low-rank approximation with Lanczos. There are many pos-

sible ways to form a low-rank approximation of K̂−1
XX. Our proposed method

will make use of the Lanczos algorithm from Section 2.3.2, which will generate

the low-rank approximation through matrix-vector multiplication (MVMs). As

we will demonstrate in Section 4.5, the Lanczos low-rank approximation rapidly

converges to the true inverse.

Recall from Section 2.3.2 that J iterations of Lanczos tridiagonalization ap-

proximate matrix solves:

K̂−1
XXb ≈ QT−1Q>b,

where the orthonormal matrix Q ∈ RN×J and tridiagonal matrix T ∈ RJ×J are

computed with respect to probe vector b. As argued by Parlett [1980], Saad

[1987], and Schneider and Willsky [2001], the Q and T matrices can be used

89

Table 4.1: Asymptotic complexities of predictive (co)-variances (N training
points, M inducing points, J Lanczos/CG iterations).

Method Pre-computation Computing variances
(time) (storage) (time)

Standard GP O(N3) O(N2) O(N2)
SGPR O(NM2) O(M2) O(M2)

KISS-GP – – O(J(N +M logM))
Standard GP (w/ LOVE) O(JN2) O(JN) O(JN)

KISS-GP (w/ LOVE) O(J(N +M logM)) O(JM) O(J)

to approximate subsequent solves K̂−1
XXb′ ≈ QT−1Q>b′. We exploit this fact

and use QT−1Q> to be a general-purpose approximation to K̂−1
XX. By running

J � N Lanczos iterations (e.g. J ≈ 100), the resulting approximation will be

low-rank. In particular, we have

K̂−1
XX ≈

apply Lanczos

QT−1Q>

=
(
QL−>T

)
R>

(
L−1

T Q>
)

R

where LT is the Cholesky factor of T. Applying Lanczos to K̂XX requires J

MVMs for a total of O(Jξ(K̂XX)) time (ξ(K̂XX) is the complexity of one MVM

with K̂XX, which is nominally O(N2)). Computing and applying the Cholesky

factor LT is O(J) time due to the tridiagonal structure of T.

In total, the entire pre-computation phase takes O(JN2) time for standard

GPs. This is the same amount of time of a single marginal likelihood compu-

tation using BBMM. After pre-computation, each covariance takes O(JN) time.

We refer to this fast covariance approximation algorithm as LanczOs Variance

Estimates, or LOVE for short. It is summarized in Algorithm 4.1 and Table 4.1.

J , the size of the low-rank approximation, depends on the conditioning of

K̂XX and not its size. Empirically, we find that J = 100 is sufficient for most

matrices with N ≤ 20,000; therefore J can be considered to be constant.

90

Table 4.2: Asymptotic complexities of posterior sampling (N training points,
M inducing points, J Lanczos/CG iterations, S samples, T test points).

Method Pre-computation Drawing S samples
(time) (storage) (time)

Standard GP – – O(TN2 + T 2(N + S) + T 3)
SGPR – – O(TM2 + T 2(M + S) + T 3)

KISS-GP – – O(JT (N +M logM) + T 2(M + S) + T 3)
KISS-GP (w/ LOVE) O(J(N +M logM)) O(JM) O(JS(T +M))

4.3.1 Programmability

Because LOVE is a MVM-based algorithm, it affords the same modularity as

BBMM. When LOVE is used in conjunction with scalable GP approximation-

s/multitask models, we can take advantage of fast kernel MVMs for a o(N2)

asymptotic complexity. In GPyTorch we use the LazyTensor construct from

Section 3.4 to adapt LOVE to specialty models. The same matmul function we

use for mBCG can also be used for fast (co)-variances with LOVE.

4.4 LOVE with KISS-GP

In this section, we demonstrate that LOVE is an especially compelling algorithm

for the scalable KISS-GP framework. With a few modifications to Algorithm 4.1,

KISS-GP + LOVE can achieve constant-time covariance approximations and linear

time posterior samples.

91

Algorithm 4.2: LOVE + KISS-GP for constant-time predictive vari-
ances. Terms in blue only depend on training data.

Input : wx∗ , wx∗′ – interpolation vectors for x∗, x∗′

k(x∗,x∗′) – prior covariance between x∗, x∗′

b = 1
M

W>
XKZZ1 – average col. of W>

XKZZ

mvm K̂XX() – func. that performs MVMs with K̂XX

mvm KZX() – func. that performs MVMs with KZX

Output: Approximate predictive covariance Cov∗ (x∗,x∗′).

if R̃ has not previously been computed then
Q,T← lanczosJ(mvm K̂XX, b)

// J iter. of Lanczos w/ matrix K̂XX and probe vec. b

LT← cholesky factor(T)
R̃← trinagular solve(mvm KZX(Q),LT) ;
// R̃ = L−1T Q>W>

XKZZ

end
// R̃ ∈ RJ×M, J �M.

v← sparse mm(R̃, w∗x)
v′← sparse mm(R̃, w∗′x)
return kx∗i ,x∗j − vTv′

4.4.1 Constant-Time (Co)-Variances with KISS-GP + LOVE

The KISS-GP approximation W>
XKZZWX allows us to make additional pre-

computations to further reduce test-time complexity. In particular,

Cov∗ (x∗,x∗′) ≈ k(x∗,x∗′)− k>Xx∗R
>RkXx∗′ + σ2

obs

≈ k(x∗,x∗′)−
(
w>x∗ KZZWX) R>

R̃>

R
(
W>

XKZZ

R̃

wx∗′) + σ2
obs

≈ k(x∗,x∗′)−
(
R̃w>x∗

)> (
R̃w>x∗′

)
+ σ2

obs (4.6)

The matrix R̃ = RKZZWX is a J × M matrix. Variance computations with

Eq. (4.6) take O(J) time due to the sparsity of wx∗ and wx∗′ . Taking J to be

a constant (as J ≈ 100 suffices for most kernel matrices), KISS-GP covariance

computations with Eq. (4.6) take constant time.

92

Moreover, this additional work to compute R̃ from R takes negligible time.

The complexity of computing R is O(J(N + M logM)), as Lanczos requires J

MVMs with K̂XX and KISS-GP affords O(N + M logM) MVMs. Forming R̃

requires multiplying the J ×N R matrix by KZZ and WX, which also takes

O(J(N +M logM)) time. It is summarized in Algorithm 4.2 and Table 4.1.

In addition to these fast predictive (co)-variances, LOVE + KISS-GP offers

two additional speedups that are specific to KISS-GP models.

4.4.2 Predictive Distribution Sampling with LOVE + KISS-GP

When used in conjunction with KISS-GP, LOVE can also be used to compute

samples from the posterior covariance matrix. This is a very common opera-

tion: in Bayesian optimization, several popular acquisition functions—such as

predictive entropy search [Hernández-Lobato et al., 2014], max-value entropy

search [Wang and Jegelka, 2017], and knowledge gradient [Frazier et al., 2009]—

require posterior sampling.

Let X∗ = [x∗1, . . . ,x
∗
T] be a test set of T points. To draw samples from

p(f(x∗1), . . . , f(x∗T) | D)—the posterior function evaluated on x∗1, . . . ,x
∗
T , the

cross-covariance terms (i.e. Cov∗
(
x∗i ,x

∗
j

)
) are necessary in addition to the vari-

ance terms (Var∗ (x∗i)). We sample ε ∼ p(f(x∗1), . . . , f(x∗T) |D) through the repa-

rameterization trick [Kingma and Welling, 2014, Rezende et al., 2014]:

µ∗ =


µ∗ (x∗1)

...

µ∗ (x∗1)

 , COV∗ =


Cov∗ (x∗1,x

∗
1) · · · Cov∗ (x∗1,x

∗
T)

. . .

Cov∗ (x∗T ,x
∗
1) · · · Cov∗ (x∗T ,x

∗
T)

 ,
ε = µ∗ + Sε′ ∼ p(f(x∗1), . . . , f(x∗T) |D) (4.7)

93

where ε′ ∼ N [0, I] and S is some matrix such that SS> = COV∗. Typically SS>

is taken to be the Cholesky decomposition of the posterior covariance matrix.

Computing this decomposition incurs a O(T 3) cost on top of the O(T 2) covari-

ance evaluations.

A fast KISS-GP sampling matrix. We use LOVE and KISS-GP to rewrite

Eq. (4.6) as

COV∗ ≈ KX∗,X∗ −

LOVE + KISS-GP approximation

W>
X∗

(
R̃>R̃

)
WX∗

≈
KISS-GP approximation

W>
X∗KZZWX∗ −W>

X∗

(
R̃>R̃

)
WX∗

= W>
X∗

(
KZZ − R̃>R̃

)
WX∗ (4.8)

where WX∗ = [wx∗1
, . . . ,wx∗T

] is the interpolation matrix for test points. We

have thus reduced the full covariance matrix to a test-independent term

(KZZ − R̃>R̃) that can be pre-computed. We apply the Lanczos algorithm on

this term during pre-computation to obtain a rank-J approximation:

KZZ − R̃>R̃′ ≈ Q′T′Q′>, (4.9)

where again Q′ ∈ RM×J is orthonormal and T′ ∈ RJ×J is tridiagonal.

This Lanczos decomposition Q′T′Q′> requires J matrix-vector multiplies with

KZZ − R̃>R̃, each of which requires O(M logM) time. Substituting Eq. (4.9)

into Eq. (4.8), we get:

COV∗ ≈W>
X∗

(
Q′T′Q′>

)
WX∗

= W>
X∗ (Q′LT′)

(
LT′>Q′>

)
WX∗ (4.10)

where LT′ is the Cholesky factor of T′ (a O(J) operation due to the tridiagonal

structure). Setting S = Q′LT, we see that COV∗ = (W>
X∗S)(W>

X∗S)>. Moreover,

94

S ∈ RM×J can be pre-computed and cached since it does not depend on test

data. In total, pre-computing S takes O(JM logM + MJ2) time in addition to

what is required for fast variances. A matrix-vector multiplication with (W>
XS)

takes O(TJ) time due to the O(T) sparsity of WX. Therefore, drawing S sam-

ples (corresponding to S different values of ε′) takes O(SJ(T + M)) time (see

Table 4.2)—a linear dependence on T .

4.4.3 Extension to Additive KISS-GP Kernel Compositions

LOVE is applicable even when the KISS-GP approximation is used with an ad-

ditive composition of kernels,

k̃(x,x′) = w(1)>
x K

(1)
ZZw

(1)
x′ + . . .+ w(D)>

x K
(D)
ZZ w

(D)
x′ .

Additive structure has been a focus in several Bayesian optimization settings,

since the cumulative regret of additive models depends linearly on the num-

ber of dimensions [Kandasamy et al., 2015, Wang et al., 2017, Gardner et al.,

2017, Wang and Jegelka, 2017]. Additionally, deep kernel learning GPs [Wilson

et al., 2016a,b] typically use sums of one-dimensional kernel functions. To apply

LOVE, we note that the KISS-GP additive composition can be re-written as

k̃(x,x′) =


w

(1)
x

...

w
(D)
x


>

K
(1)
ZZ . . . 0

...

0 . . . K
(D)
ZZ




w
(1)
x

...

w
(D)
x′

 . (4.11)

The block matrices in Eq. (4.11) are analogs of their 1-dimensional counterparts

in Eq. (2.10). Therefore, we can directly apply Algorithm 4.2, replacing WX, w∗x,

w∗′x , and KZZ with their block forms. The block w∗x, w∗′x vectors areO(D)-sparse,

and therefore interpolation takes O(D) time. MVMs with the block KZZ matrix

95

take O(DM logM) time by exploiting the block-diagonal structure. With D ad-

ditive components, predictive variance computations cost only a factor O(D)

more than their 1-dimensional counterparts.

4.5 Results

In this section we demonstrate the effectiveness and speed of KISS-GP + LOVE,

both at computing predictive variances and also at posterior sampling. Our goal

is to show that 1) LOVE produces uncertainties and samples that are indistin-

guishable from the state-of-the-art, and 2) that LOVE offers substantial speed

improvements. All experiments in this section use LOVE in conjunction with

KISS-GP models. See Chapter 6 for results where LOVE is used with standard

Gaussian processes.

In the following experiments, all LOVE low-rank approximations use J = 50

Lanczos iterations and KISS-GP models use M = 10,000 inducing points unless

otherwise stated. We optimize models with ADAM [Kingma and Ba, 2015] and

a learning rate of 0.1. All timing experiments are performed on a GTX 1070

GPU. Exact GPs, KISS-GP models, and LOVE are implemented in our GPyTorch

software. SGPR models are implemented in GPFlow [Matthews et al., 2017].

4.5.1 Predictive Variances

We measure the accuracy and speed of LOVE + KISS-GP variances. In all ex-

periments, we compare against Exact GP (Exact) variances (without LOVE) and

standard KISS-GP variances (KISS-GP w/o LOVE). (Note that we do not com-

96

1950 1952 1954 1956 1958 1960
Year

100

200

300

400

500

600

#
p
as

se
n
ge

rs
(t

h
ou

sa
n
d
s)

Train Test

Airline Passenger Prediction

Exact GP

KISS-GP w/ LOVE

3

x1500

1958.526 1958.5266
499.0

499.3

Figure 4.1: Comparison of LOVE predictive variances versus exact predictive
variances on airline passenger extrapolation. The LOVE variances are accurate
within 10−4.

pare predictive means, as LOVE only affects variance computations.) We re-

port the scaled mean absolute error (SMAE)1 [Rasmussen and Williams, 2006] of

LOVE + KISS-GP variances compared against these baselines. For each dataset,

we optimize the hyperparameters of a KISS-GP model. We then apply the same

hyperparameters to each baseline model.

One-dimensional example. We first demonstrate LOVE on a complex one-

dimensional regression task. The airline passenger dataset (Airline) measures

the average monthly number of passengers from 1949 to 1961 [Hyndman, 2005].

We aim to extrapolate the numbers for the final 4 years (48 measurements) given

the first 8 years (96 measurements). Accurate extrapolation on this dataset re-

quires a kernel function capable of expressing various patterns, such as the spec-

tral mixture (SM) kernel [Wilson and Adams, 2013].

1Mean absolute error divided by the variance of y.

97

Table 4.3: Speedup and accuracy of LOVE + KISS-GP for predictive variances
(Deep RBF Kernels). Accuracy is measured by Scaled Mean Average Error. (N
is the number of data, D is the dimensionality.)

Dataset Variance SMAE

Name N D (vs KISS-GP w/o LOVE) (vs Exact GP) (from scratch) (after pre-comp.)

Airfoil 1,503 6 1.30× 10−5 7.01× 10−5 4× 84×
Skillcraft 3,338 19 2.00× 10−7 2.86× 10−4 25× 167×

Parkinsons 5,875 20 8.80× 10−5 5.18× 10−3 46× 443×
PoleTele 15,000 26 2.90× 10−5 1.08× 10−3 78× 1178×
Elevators 16,599 18 1.20× 10−6 – 64× 1017×
Kin40k 40,000 8 3.90× 10−7 – 31× 2065×
Protein 45,730 9 5.30× 10−5 – 44× 1151×

Dataset Speedup over SGPR

Name N D
(from scratch) (after pre-comp.) (from scratch) (after pre-comp.)

M = 100 M = 100 M = 1000 M = 1000

Airfoil 1,503 6 3× 49× 9× 183×
Skillcraft 3,338 19 4× 70× 17× 110×

Parkinsons 5,875 20 3× 33× 16× 152×
PoleTele 15,000 26 1.5× 40× 21× 343×
Elevators 16,599 18 2× 31× 20× 316×
Kin40k 40,000 8 8× 81× 12× 798×
Protein 45,730 9 10× 109× 20× 520×

We compute the variances for Exact GP and KISS-GP + LOVE models with

a 10-mixture SM kernel. In Fig. 4.1, we see that the LOVE + KISS-GP confidence

intervals match the Exact GP’s intervals extremely well. The SMAE of LOVE’s

predicted variances (compared against Exact GP variances) is 1.29 × 10−4. Al-

though not shown in the plot, we confirm the reliability of these predictions by

computing the log-likelihood of the test data. We compare the LOVE + KISS-GP

model to an Exact GP, a KISS-GP model without LOVE, and a sparse variational

GP (SGPR) model with M = 1000 inducing points. All methods achieve nearly

identical log-likelihoods, ranging from −221 to −222.

98

Large datasets. We measure the accuracy of LOVE variances on several large-

scale regression benchmarks from the UCI repository [Asuncion and Newman,

2007]. Each of the models use deep RBF kernels (DKL) with the architectures

described in [Wilson et al., 2016a]. In Table 4.3, we report the SMAE of the LOVE

+ KISS-GP variances compared against the two baselines. On all datasets, we

find that LOVE + KISS-GP matches KISS-GP w/o LOVE to at least 5 decimal

places. Furthermore, LOVE + KISS-GP is able to approximate Exact variances

with no more than than 10−3 error. Therefore, using LOVE to compute variances

results in almost no loss in accuracy.

Speedup. In Table 4.3 we compare the variance computation speed of a KISS-

GP model with and without LOVE on the UCI datasets. In addition, we com-

pare against SGPR models (with non-deep RBF kernels), a competitive scalable

GP approach. On all datasets, we measure the time to compute variances from

scratch, which includes the cost of pre-computation. In addition, we report the

speed after pre-computing any terms that aren’t specific to test points. We see

in Table 4.3 that KISS-GP + LOVE yields a substantial speedup over KISS-GP

without LOVE. The speedup is between 4× and 44×, even when accounting for

LOVE’s precomputation. After pre-computation, LOVE is up to 2,000× faster.

Additionally, LOVE + KISS-GP is significantly faster than SGPR models. For

SGPR models with M = 100 inducing points, the LOVE + KISS-GP model (with

M = 10,000 inducing points) is up to 10× faster before pre-computation and

100× faster after. Compared against M = 1000 SGPR models, LOVE + KISS-GP

is up to 20×/500× faster before/after precomputation. The biggest improve-

ments are obtained on the largest datasets since LOVE, unlike other methods, is

independent of dataset size at test time.

99

0 20 40 60 80 100

Rank (J)

10−7

10−5

10−3

10−1

V
ar

ia
n

ce
E

rr
or

(S
M

A
E

) PolTele (N = 15,000)

Elevators (N = 16,599)

Kin40k (N = 40,000)

Protein (N = 45,730)

Figure 4.2: LOVE variance error as a function of Lanczos iterations (KISS-GP
model, M = 10,000. Protein, Kin40k, PoleTele, and Elevators UCI datasets).

Accuracy vs. Lanczos iterations. In Fig. 4.2, we measure the accuracy of LOVE

as a function of the number of Lanczos iterations (J), which corresponds to the

rank of the R̃ matrix in Eq. (4.6). We train a KISS-GP model with a deep RBF

kernel on the four largest datasets from Table 4.3, measuring the SMAE of LOVE

+ KISS-GP’s predictive variances.2 As seen in Fig. 4.2, error decreases exponen-

tially with the number of Lanczos iterations, up until roughly 50 iterations. Af-

ter roughly 50 iterations, the error levels off, though this may be an artifact of

floating-point precision (which may also cause small subsequent fluctuations).

4.5.2 Sampling

We evaluate the quality of posterior samples drawn with LOVE + KISS-GP as

described in Section 4.4.2. We compare against three baselines: sampling from

an Exact GP using the Cholesky decomposition, sampling from a SGPR model

with Cholesky, and sampling from an exact GP with random Fourier features

2As measured against the variances from KISS-GP w/o LOVE.

100

Table 4.4: Accuracy and computation time of drawing samples from the poste-
rior distribution.

Dataset

Sample Covariance Error

Exact GP
w/ Cholesky

Fourier
Features

SGPR
(M = 100)

SGPR
(M = 1000)

LOVE
+ KISS-GP

PolTele 8.8× 10−4 1.8× 10−3 4.9× 10−3 2.7× 10−3 7.5× 10−4

Elevators 2.6× 10−7 3.1× 10−4 8.7× 10−6 3.6× 10−6 5.5× 10−7

BO (Eggholder) 7.7× 10−4 1.5× 10−3 8.1× 10−4 – 8.0× 10−5

BO (Styblinski-Tang) 5.4× 10−4 7.3× 10−3 5.2× 10−4 – 5.2× 10−4

Dataset

Speedup over Exact GP w/ Cholesky

Fourier
Features

SGPR
(M = 100)

SGPR
(M = 1000)

LOVE
+ KISS-GP

(from scratch)

LOVE
+ KISS-GP

(after pre-comp.)

PolTele 22× 24× 3× 21× 881×
Elevators 31× 33× 4× 25× 1062×

BO (Eggholder) 16× 8× – 19× 775×
BO (Styblinski-Tang) 11× 8× – 42× 18,100×

[Rahimi and Recht, 2008]. For Fourier features, we use 5000 random features—

the maximum number of features without exhausting available GPU memory.

The model hyperparameters are learned on an Exact GP and then shared across

all baselines. We use two UCI datasets (PolTele and Eleveators) as well as two

Bayesian optimization (BO) benchmark functions (Eggholder: 2 dimensional,

and Styblinski-Tang: 10 dimensional). For the BO functions, we evaluate the

model after 100 queries of max-value entropy search [Wang and Jegelka, 2017].

For Eggholder, we use a standard (non-deep) RBF kernel; for Syblinski-Tang we

use the additive kernel suggested by Kandasamy et al. [2015].3

3The Syblinski-Tang KISS-GP model uses the sum of 10 RBF kernels—one for each
dimension—and M = 100 inducing points.

101

Sampling accuracy. In Table 4.4 we evaluate the accuracy of the different sam-

pling methods. We draw S=1000 samples at T =10,000 test locations and com-

pare the empirical covariance matrix with the true posterior covariance. The re-

ported numbers are element-wise mean absolute errors. It is worth noting that

all methods incur some sampling error—even when sampling with an Exact

GP. Nevertheless, Exact GPs, SGPR, and LOVE produce very accurate sample

covariance matrices. In particular, Exact GPs and LOVE achieve between 1 and

3 orders of magnitude less error than the Random Fourier Feature method.

Speed. Though LOVE, Exact GPs, and SGPR have similar accuracies, LOVE

is much faster. Even when accounting for LOVE’s pre-computation time (i.e.

sampling “from scratch”), LOVE is comparable to Fourier features and SGPR in

terms of speed. At test time (i.e. after pre-computation), LOVE is up to 18,000

times faster than Cholesky.

Bayesian optimization. Many acquisition functions in Bayesian optimization

rely on sampling from the GP posterior. For example, max-value entropy search

[Wang and Jegelka, 2017] uses samples to estimate the function’s maximum

value p(ymax |D). In Fig. 4.3, we visualize each method’s sampled distribution of

p(ymax | D) for the Eggholder function. We plot kernel density estimates of this

distribution after 100 BO iterations.4 Since the Exact GP sampling method uses

the Cholesky decomposition, its sampled max-value distribution can be con-

sidered closest to ground truth. The Fourier feature distribution differs signifi-

cantly from the Exact GP distribution. In contrast, LOVE very closely resembles

4Using the max-value entropy search acquisition function [Wang and Jegelka, 2017].

102

−0.2 −0.1 0.0 0.1 0.2 0.3

Value of ymax (Normalized)

0

2

4

6

8

D
en

si
ty

Sampled Dist. p(ymax | D)

Exact

Fourier Feat.

LOVE

Figure 4.3: Comparison of LOVE versus Random Fourier Features for Bayesian
optimization (BO) via max-value entropy search. Each line represents an ap-
proximation of the maximum value distribution p(ymax | D) using different sam-
pling methods (exact sampling, Random Fourier Features, and LOVE + KISS-
GP). Samples drawn with LOVE+KISSGP closely match samples drawn using
an Exact GP. (Dataset: (normalized) Eggholder function after 100 iterations of
BO.)

Exact GPs, yet can be computed up to 700× faster (Table 4.4).

4.6 Discussion

This chapter has introduced the LOVE algorithm for exact GPs and KISS-GP

models. Whereas the running times of previous methods depend on dataset

size, LOVE + KISS-GP provides constant time and near-exact predictive vari-

ances. It is worth noting that LOVE is fully compatible with other inducing

point techniques as well, as the algorithm is defined by a matrix-vector multipli-

cation routine. For example, one could apply LOVE to SGPR using the efficient

MVM described in Section 3.4. Since SGPR makes a rank M � N approxima-

tion to the kernel, setting J=M recovers theO(NM2) precomputation time and

O(M2) prediction time of standard SGPR variances [Titsias, 2009].

103

Ensuring Lanczos solves are accurate. Given a matrix K̂XX, the Lanczos de-

composition QTQ> is designed to approximate the solve K̂−1
XXb, where b is the

first column of Q. As argued in Section 2.3.2, the Q and T matrices can usu-

ally be re-used to approximate the solves K̂−1
XX(W>

XKZZ) ≈ QT−1Q>(W>
XKZZ).

This property of the Lanczos algorithm is why LOVE can compute fast predic-

tive variances. While this method usually produces accurate solves, the solves

will not be accurate if some columns of (W>
XKZZ) are (nearly) orthogonal to the

columns of Q. Importantly, we can easily check the accuracy of the solves by

measuring the residual norm:

‖K̂XX

(
RR>

)
≈K̂−1

XX

kXx∗ − kXx∗‖2.

Note that this convergence check only requires an additional MVM with K̂XX. If

the residual is not sufficiently small for some vector kXx∗ , we can run conjugate

gradients to refine the solve K̂−1
XXkXx∗ using RR>kXx∗ as an initial starting vec-

tor. In practice, we find that these countermeasures are almost never necessary

with LOVE—the Lanczos solves are almost always accurate.

Numerical stability of Lanczos. A practical concern for LOVE is round-off

errors that may affect the Lanczos algorithm. In particular it is common for

the vectors of Q to lose orthogonality [Paige, 1970, Simon, 1984, Golub and

Van Loan, 2012], resulting in an incorrect decomposition. To correct for this, sev-

eral methods such as full reorthogonalization and partial or selective reorthogo-

nalization exist [e.g. Golub and Van Loan, 2012]. In our implementation, we use

full reorthogonalization when a loss of orthogonality is detected. In practice,

the cost of this correction is absorbed by the parallel performance of the GPU

and does not impact the final running time.

104

Sampling without KISS-GP. LOVE in conjunction with KISS-GP makes it

possible to efficiently draw samples from a GP posterior. This has potential in

many applications like Bayesian optimization and model-based reinforcement

learning [e.g., Deisenroth and Rasmussen, 2011, Hernández-Lobato et al., 2014,

Wang and Jegelka, 2017], which typically rely on parametric approximations or

finite basis approaches for approximate sampling. However, it is worth not-

ing that this sampling technique cannot be applied to exact GP models, as the

derivation of LOVE sampling requires an inducing point approximation to the

prior test covariance KX∗X∗ (see Eq. (4.8)). In the next chapter we will address

this limitation and introduce a O(N2) sampling algorithm for exact Gaussian

process models.

A complete MVM-based framework for Gaussian process regression. These

past two chapters have presented MVM-based methods for training GPs (using

BBMM) and computing predictive distributions (using LOVE). Both of these al-

gorithms can be readily applied to regression models with Gaussian likelihoods.

In Chapter 6 we will utilize these methods to push beyond current limits of ex-

act GP models. Before discussing those results, we will first introduce one final

MVM-based method for non-conjugate GP models (e.g. classification GPs).

105

CHAPTER 5

VARIATIONAL GAUSSIAN PROCESSES INFERENCE AND BAYESIAN

OPTIMIZATION VIA CONTOUR INTEGRAL QUADRATURE

5.1 Introduction

The BBMM and LOVE algorithms address training and predictions with GP

regression models. However, other GP tasks—such as black-box optimization

and non-conjugate inference (e.g. classification)—require two additional kernel

matrix operations.

• Sampling from GP posteriors—as described in Section 4.4.2—is a com-

mon inference operation especially in the context of Bayesian optimization

[Thompson, 1933, Frazier et al., 2009, Wang and Jegelka, 2017]. Since we

cannot directly sample a function f(·) ∼ p(f(·) | D), it is more common

to draw samples from f(·) evaluated on a finite test set X∗ = [x∗1, . . . ,x
∗
T]

If N [µ∗,COV∗] is the GP posterior evaluated on X∗, then we can draw

samples ε′ via the reparameterization trick [Kingma and Welling, 2014,

Rezende et al., 2014]:

ε = µ∗ +
(

COV∗
1
2

)
ε′. (5.1)

where ε′ ∼ N [0, I] is a standard normal vector.

• “Whitening” is essentially the inverse of the sampling operation—and it

is often necessary for non-conjugate GP approximations. If b is a random

variable with mean µ and covariance K (e.g. a sample from a GP prior),

then the whitening operation gives us a coordinate transformation

b′ = K−
1
2 (b− µ) (5.2)

106

so that the resultant vector b′ has zero mean and unit covariance. As we

will discuss in Section 5.4.1, the whitening operation can significantly ac-

celerate the convergence of variational Gaussian process inference [Kuss

and Rasmussen, 2005, Hensman et al., 2013, Matthews, 2017].

Note that Eqs. (5.1) and (5.2) both require applying the matrix square root (or

its inverse) to a vector: K1/2b. In practice, K1/2 can be replaced with any matrix

R such that RR> = K. All such R matrices are equivalent to K1/2 up to an

orthonormal rotation [Golub and Van Loan, 2012].

Existing methods for sampling and whitening typically rely on the Cholesky

factorization: K = LL>. However, computing the Cholesky factor requires

O(N3) time andO(N2) memory for anN×N covariance matrix K. To avoid this

large complexity, randomized algorithms [Rahimi and Recht, 2008, Mutny and

Krause, 2018], low-rank/sparse approximations [Hensman et al., 2017, Wilson

et al., 2020], or alternative distributions [Wang and Jegelka, 2017] are often used

to approximate the sampling and whitening operations. The previous chapter

offers an efficient sampling method for KISS-GP models; however, this method

is not generally applicable to other classes of GP models (see Section 4.4.2).

In this chapter, we make several contributions to address these issues:

• We introduce a MVM approach for computing K±1/2b. The approach uses

an insight from Hale et al. [2008] that expresses the matrix square root as

a sum of shifted matrix inverses.

• To efficiently compute these shifted inverses, we leverage a modified ver-

sion of the MINRES algorithm [Paige and Saunders, 1975] that performs

multiple shifted solves through a single iteration of MVMs. We demonstrate

107

that, surprisingly, multi-shift MINRES (msMINRES) convergence can

be accelerated with a single preconditioner despite the presence of mul-

tiple shifts. Achieving 4 or 5 decimal places of accuracy typically requires

fewer than 100 matrix-vector multiplications, which can be highly accelerated

through GPUs.

• We derive a scalable backward pass for K±1/2b that enables our approach

to be used as part of learning and optimization.

• We apply our K−1/2b and K1/2b routines to two applications: (1) vari-

ational Gaussian processes with up to M = 104 inducing points (where

we additionally introduce a O(M2) MVM-based natural gradient up-

date); and (2) sampling from Gaussian process posteriors in the context

of Bayesian optimization with up to 50,000 candidate points.

5.2 Contour Integral Quadrature (CIQ) via Matrix-Vector Mul-

tiplication

In this section we develop a MVM method to compute K±1/2b for sampling and

whitening. Our approach scales better than existing methods (e.g. Cholesky)

by: (1) reducing computation from O(N3) to O(N2); (2) more effectively using

GPU acceleration; and (3) affording an efficient gradient computation.

Contour Integral Quadrature (CIQ) A standard result from complex analysis

is that K−1/2 can be expressed through Cauchy’s integral formula:

K−1/2 =
1

2πi

∮
Γ

τ−1/2 (τI−K)−1 dτ,

108

where Γ is a closed contour in the complex plane that winds once around the

spectrum of K−
1
2 [Davies and Higham, 2005, Hale et al., 2008, Higham, 2008].

Applying a numerical quadrature scheme to the contour integral yields the ra-

tional approximations

K−
1
2 ≈

Q∑
q=1

wq (tqI + K)−1 and K
1
2 ≈ K

Q∑
q=1

wq (tqI + K)−1 , (5.3)

where the weights wq encapsulate the normalizing constant, quadrature

weights, and the t−
1
2

q terms. Hale et al. [2008] introduce a real-valued quadrature

strategy based on a change-of-variables formulation (described in Appendix B)

that converges extremely rapidly—often achieving full machine precision with

only Q ≈ 20 quadrature points. For the remainder of this chapter, apply-

ing Eq. (5.3) to compute K±1/2b will be referred to as Contour Integral Quadra-

ture (CIQ).

5.2.1 An Efficient Matrix-Vector Multiplication Approach to

CIQ with msMINRES

Using the quadrature method of Eq. (5.3) for whitening and sampling requires

solving several shifted linear systems. To compute the shifted solves required

by Eq. (5.3) we leverage a variant of the minimum residuals algorithm (MIN-

RES) developed by Paige and Saunders [1975] (see Section 2.3.4).

msMINRES for multiple shifted solves. To efficiently compute all the shifted

solves, we leverage techniques [e.g. Datta and Saad, 1991, Freund, 1990, Meer-

bergen, 2003] that exploit the shift-invariance property of Krylov subspaces:

109

i.e. KJ(K,b) = KJ(tI + K,b). We introduce a variant of MINRES, which we

refer to as multi-shift MINRES or msMINRES, that re-uses the same Krylov

subspace vectors [b, Kb, . . . , KJ−1b] for all shifted solves (tI + K)−1b. In

other words, using msMINRES we can get all (tqI + K)−1b essentially for free,

i.e. only requiring J MVMs for the Krylov subspace KJ(K,b). As with stan-

dard MINRES, the msMINRES procedure for computing (tqI + K)−1 from

[b, Kb, . . . , KJ−1b] can be reduced to a simple vector recurrence.

First, recall from Section 2.3.4 that the MINRES solution for K−1b can be

formed through Lanczos (see Eq. (2.33)):

K−1b ≈ ‖b‖2 QJ

(
R−1
J QQQ>J

)
e1, QQQJRJ =

 TJ

‖rJ‖2e
>
J

 , (5.4)

where QJ , TJ , and rJ are the outputs from J steps of the Lanczos algorithm

with initial vector b:

KQJ = QJTJ + rJe
>
J .

To adapt MINRES to multiple shifts (i.e. msMINRES), we exploit a well-

established fact about the shift invariance of Krylov subspaces:

Observation 5.1. Let KQJ = QJTJ + rJe
>
J be the Lanczos factorization for K given

the initial vector b. Then

(K + tI)QJ = QJ(TJ + tI) + rJe
>
J

is the Lanczos factorization for matrix (K + tI) with initial vector b.

Consequently, we can re-use the QJ and TJ Lanczos matrices to compute mul-

tiple shifted solves.

(K + tI)−1b ≈ ‖b‖2 QJ

(
R

(t)−1
J QQQ(t)>

J

)
e1, QQQ(t)

J R
(t)
J =

TJ + tI

‖rJ‖2e
>
J

 , (5.5)

110

Assuming Q and T have been previously computed, Eq. (5.5) requires no ad-

ditional MVMs with K. We refer to this multi-shift formulation as Multi-Shift

MINRES, or msMINRES.

A simple vector recurrence for msMINRES. Just as with standard MINRES,

Eq. (5.5) can also be computed via a vector recurrence. We can derive a msMIN-

RES algorithm simply by modifying the existing MINRES recurrence. Before

the QR step in Algorithm 2.5, we add t to the Lanczos diagonal terms (γj + t,

where γj = T (j,j)). This can be extended to simultaneously handle multiple shifts

t1, . . . , tQ. Each shift would compute its own QR factorization, its own step size

ϕ
(tq)
j , and its own search vector d

(tq)
j . However, all shifts share the same Lanczos

vectors qj and therefore share the same MVMs. The operations for each shift

can be vectorized for efficient parallelization.

To summarize: the resulting algorithm—msMINRES—gives us approxima-

tions to (t1I+K)−1b, . . ., (tQI+K)−1 essentially for free by leveraging the informa-

tion we needed anyway to compute K−1b. The full vector recurrence is outlined

in Algorithm 5.1. Its computational properties will be highlighted below.

5.2.2 Computational Complexity and Convergence Analysis of

msMINRES-CIQ

Pairing Eq. (5.3) with msMINRES is an efficient algorithm for computing K1/2b

and K−1/2b. Algorithm 5.2 summarizes this approach; below we highlight its

computational properties:

Property 5.1 (Computation/Memory of msMINRES-CIQ). J iterations of

111

Algorithm 5.1: Multi-shift MINRES (msMINRES). Differences from
MINRES (Alg. 2.5) are in green. Green for loops are parallelizable.

Input : mvm K(·) – function for MVM with matrix K
b – vector to solve against
t1, . . . , tQ – shifts

Output: c1 = (K + t1)−1b, . . . , cQ = (K + tQ)−1b.

q1← b/‖b‖2 // Current Lanczos vector.

v1← mvm K(q0) // Buffer for MVM output.

δ1← ‖b‖2, δ0← 1 // Current/prev. Lanczos residual/sub-diagonal.

for q ← 1 to Q do
c

(q)
1 ← 0 // Current solution.

d
(q)
1 ,d

(q)
0 ← 0 // Current & prev. ‘‘search’’ direction.

ϕ
(q)
2 ← ‖b‖2 // Current ‘‘step’’ size.

η
(q)
1 ← 1, η(q)

0 ← 0 // Current/prev. scaling term.

end
for j ← 2 to J do

qj ← vj/δj
vj ← mvm K(qj) −δjqj−1

γj ← qjvj
vj ← vj − γjqj
δj ← ‖vj‖
for q ← 1 to Q do

ε
(q)
j ← δj−1

(
δj−2/

√
δ2
j−2 + η

(q)2
j−2

)
ζ

(q)
j ← δj−1

(
η

(q)
j−2/

√
δ2
j−2 + η

(q)2
j−2

)
η

(q)
j ← (γj + tq)

(
η

(q)
j−1/

√
δ2
j−1 + η

(q)2
j−1

)
+ζ

(q)
j

(
δj−1/

√
δ2
j−1 + η

(q)2
j−1

)
ζ

(q)
j ← ζ

(q)
j

(
η

(q)
j−1/

√
δ2
j−1 + η

(q)2
j−1

)
+ (γj + tq)

(
δj−1/

√
δ2
j−1 + η

(q)2
j−1

)
η

(q)
j ← η

(q)
j

(
η

(q)
j /
√
δ2
j + η

(q)2
j

)
ϕ

(q)
j ← ϕ

(q)
j−1

(
δj−1/

√
δ2
j−1 + η

(q)2
j−1

)(
η

(q)
j /
√
δ2
j + η

(q)2
j

)
d

(q)
j ←

(
q− ζ(q)

j d
(q)
j−1 − ε(q)j d

(q)
j−2

)
/η

(q)
j

c
(q)
j ← c

(q)
j−1 + ϕ

(q)
j d

(q)
j

end
end
return ‖b‖2 cj

112

Algorithm 5.2: Computing K−
1
2 b with MVM-based Contour Integral

Quadrature (CIQ).
Input : mvm K(·) – function for a matrix-vector multiplication (MVM)

with matrix K
b – right hand side
J – number of msMINRES iterations
Q – number of quad. points

Output: a ≈ K−
1
2 b

[w1, . . . , wQ], [t1, . . . , tQ]← compute quad(mvm K(·), Q) // Weights

(wi) and shifts (ti) for quadrature -- details in Appendix B.

(t1I + K)−1b, . . . (tQI + K)−1b← msMINRES(mvm K(·), b, J , t1, . . ., tQ)
// Shifted MINRES computes all solves simultaneously.

return
∑Q

q=1wq (tqI + K)−1 b // CIQ estimate of
1

2πi

∫
τ−1/2(τI−K)−1b dτ = K−1/2b

msMINRES requires exactly J MVMs with the input matrix K, regardless of the num-

ber of quadrature points Q. The resulting runtime of msMINRES-CIQ is O(Jξ(K)),

where ξ(K) is the time to perform a MVM with K. The memory requirement isO(QN)

in addition to what is required to store K.

For arbitrary positive semi-definite N×N matrices, the runtime of msMINRES-

CIQ is O(JN2), where often J � N . Below we bound its error:

Theorem 5.1. Let K � 0 and b be inputs to msMINRES-CIQ, producing aJ ≈ K1/2b

after J iterations with Q quadrature points. The difference between aJ and K1/2b is

bounded by:

∥∥∥aJ −K
1
2 b
∥∥∥

2
≤

Quadrature error

O
(

exp

(
− 2Qπ2

log κ(K) + 3

))

+

msMINRES error

2Q log
(

5
√
κ(K)

)
κ(K)

√
λmin

π

(√
κ(K)− 1√
κ(K) + 1

)J−1

‖b‖2 .

where λmax, λmin are the max and min eigenvalues of K, and κ(K) ≡ λmax
λmin

is the condi-

tion number.

113

For a′J ≈ K−1/2b, the bound incurs an additional factor of 1/λmin. (See Ap-

pendix B.2 for proofs.) Theorem 5.1 suggests that error in computing (tqI +

K)−1b will be the primary source of error as the quadrature error decays rapidly

with Q. In many of our applications the rapid convergence of Krylov subspace

methods for linear solves is well established, allowing for accurate solutions if

desired. For covariance matrices up to N = 50,000, often Q = 8 and J ≤ 100

suffices for 4 decimal places of accuracy and J can be further reduced with pre-

conditioning (see Section 5.2.4).

5.2.3 Efficient Vector-Jacobi Products for Backpropagation

In certain applications, such as variational Gaussian process inference, we have

to compute gradients of the K−1/2b operation. This requires the vector-Jacobian

product v>(∂K−1/2b/∂K), where v is the back-propagated gradient. The form

of the Jacobian is the solution to a Lyapunov equation, which requires expensive

iterative methods or solving a N2 × N2 Kronecker sum (K1/2 ⊕ K1/2)−1. Both

of these options are much slower than the forward pass and are impractical

for large N . Fortunately, our quadrature formulation affords a computationally

efficient approximation to this vector-Jacobian product. If we back-propagate

directly through each term in Eq. (5.3), we have

v>
(
∂K−1/2b

∂K

)
=
∂v>K−1/2b

∂K

≈
∂
∑Q

q=1 wq
(
v>(tqI + K)−1b

)
∂K

=

≈ −1

2

Q∑
q=1

wq (tqI + K)−1 (vb> + bv>
)

(tqI + K)−1 . (5.6)

114

Since the forward pass computes the solves with b, the only additional work

needed for the backward pass is computing the shifted solves (tqI + K)−1v,

which can be computed with another call to the msMINRES algorithm. Thus

the backward pass takes only O(Jξ(K)) (e.g. O(JN2)) time.

Programmability. As with BBMM and LOVE, msMINRES-CIQ can take

full advantage of GPyTorch’s LazyTensor construct. The algorithm

for msMINRES-CIQ (Algorithm 5.2) accesses K through Lanczos and

msMINRES—each of which only requires black-box access to a MVM routine.

Therefore, msMINRES-CIQ can be implemented for specialty GP models using

the efficient matmul function of LazyTensors. Moreover, back-propagation

via Eq. (5.6) can be implemented using the deriv function of LazyTensors.

Recall that the deriv(A,B) function computes ∂ Tr(A>KB)/∂r, where r is a

representation of K. If we define A and B as

A =

[
w1 (tq1I−K)−1 v . . . wQ (tQI−K)−1 v

]
,

B =

[
(tq1I−K)−1 b . . . (tQI−K)−1 b

]
,

then the vector-Jacobi product in Eq. (5.6) can be re-written as Tr(AB>) =

deriv(A,B). This allows us to easily implement efficient CIQ variants for

structured matrices.

5.2.4 Preconditioning

To improve the convergence of Theorem 5.1, we can introduce a precondi-

tioner P where P−1K ≈ I. For standard MINRES, applying a preconditioner

115

is straightforward. We simply use MINRES to solve the system(
P−1/2KP−1/2

)
P1/2c = P−1/2b,

which has the same solution c as the original system. In practice the precondi-

tioned MINRES vector recurrence does not need access to P−1/2—it only needs

access to P−1 (see [Choi, 2006, Ch. 3.4] for details).

However, it is not immediately straightforward to apply preconditioning to

msMINRES, as preconditioners break the shift-invariance property that is nec-

essary for theO(JN2) shifted solves [Jegerlehner, 1996, Aune et al., 2013]. More

specifically, if we apply P to msMINRES, then we obtain the solves

P−1/2(P−1/2KP−1/2 + tqI)−1(P−1/2b).

Plugging these shifted solves into the quadrature equation Eq. (5.3) therefore

gives us

ãJ ≈ P−
1
2 (P−

1
2 KP−

1
2)−

1
2 (P−

1
2 b). (5.7)

In general, we cannot recover K−1/2 from Eq. (5.7). Nevertheless, we can still

obtain preconditioned solutions that are equivalent to K−1/2b and K1/2b up to

an orthogonal rotation. Let R = KP−1/2(P−1/2KP−1/2)−1/2. We have that

RR> = K
(
P−

1
2 (P−

1
2 KP−

1
2)−

1
2

)(
(P−

1
2 KP−

1
2)−

1
2 P−

1
2

)
K = K.

Thus R is equivalent to K1/2 up to orthogonal rotation. We can compute Rb

(e.g. for sampling) by applying Eq. (5.7) to the initial vector P1/2b:

Rb = K
[
P−

1
2 (P−

1
2 KP−

1
2)−

1
2 P−

1
2

] (
P

1
2 b
)

Applying preconditioned msMINRES to P1/2b

. (5.8)

Similarly, R′ = P−1/2
(
P−1/2KP−1/2

)−1/2 is equivalent to K−1/2 up to orthogonal

rotation:

R′R′> =
(
P−

1
2 (P−

1
2 KP−

1
2)−

1
2

)(
(P−

1
2 KP−

1
2)−

1
2 P−

1
2

)
= K−1.

116

We can compute R′b (e.g. for whitening) via:

R′b =
[
P−

1
2 (P−

1
2 KP−

1
2)−

1
2 P−

1
2

] (
P

1
2 b
)

Applying preconditioned msMINRES to P1/2b

. (5.9)

Crucially, the convergence of Eqs. (5.8) and (5.9) depends on the conditioning

κ(P−1K)� κ(K).

As with standard MINRES, msMINRES only requires access to P−1, not

P−1/2. Note however that Eqs. (5.8) and (5.9) both require multiplies with P1/2.

If a preconditioner P does not readily decompose into P1/2P1/2, we can simply

run the CIQ algorithm on P to compute P1/2b. Thus our requirements for a pre-

conditioner are: (1) it affords efficient solves (ideally o(N2)), and (2) it affords

efficient MVMs (also ideally o(N2)) for computing P1/2b via msMINRES-CIQ.

Note that these requirements are met by the partial pivoted Cholesky precondi-

tioner proposed in Section 3.3.

5.2.5 Related Work

Other Krylov methods for K1/2b and K−1/2b, often via polynomial approxima-

tions [e.g. Higham, 2008], have been explored. Chow and Saad [2014] compute

K1/2b via a preconditioned Lanczos algorithm. Unlike msMINRES, however,

they require storage of the entire Krylov subspace. Moreover this approach

does not afford a simple gradient computation. More similar to our work is

[Aune et al., 2013, 2014], which uses the quadrature formulation of Eq. (5.3) in

conjunction with a shifted conjugate gradients solver. We expand upon their

method by: (1) introducing a simple gradient computation, (2) proving a con-

vergence guarantee, and (3) enabling the use of simple preconditioners.

117

5.3 Benchmarking msMINRES-CIQ

In this section we empirically measure the convergence and speedup of

msMINRES-CIQ applied to several types of covariance matrices.

Convergence of CIQ. In Fig. 5.1 we measure the relative error of computing

K1/2b with msMINRES-CIQ on random matrices.1 We vary (1) the number of

quadrature points Q; (2) the size of the matrix N ; and (3) the conditioning of

the matrix. The figure displays results for matrices with spectra that decay as

λt = 1/
√
t, λt = 1/t, λt = 1/t2, and λt = e−t, as well as for one-dimensional

RBF and Matérn kernel matrices (formed with random data), which have near-

exponentially decaying spectra. Consequently, the 1/
√
t matrices are relatively

well-conditioned, while the RBF/Matérn kernels are relatively ill-conditioned.

Nevertheless, in all cases msMINRES-CIQ achieves 10−4 relative error with only

Q = 8 quadrature points, regardless of the size of the matrix. Approximation

algorithms like randomized SVD on the other hand incur an order of magnitude

more error (Fig. 5.2); a rank of R = 1,024 is unable to reduce the relative error to

a single decimal point.

To further compare msMINRES-CIQ to randomized methods, Fig. 5.3 plots

the empirical covariance matrix of 1,000 Gaussian samples drawn from a Gaus-

sian process prior N [0,K]. We construct the RBF covariance matrices K using

subsets of the Protein and Kin40k datasets [Asuncion and Newman, 2007]. We

note that all methods incur some sampling error, regardless of the subset size

1msMINRES is stopped after achieving a relative residual of 10−4 or after reaching J = 400
iterations.

118

1 2 4 8 16 32

Quadrature Sites (Q)

10−6

10−4

10−2

100

R
el

a
ti

ve
C

IQ
E

rr
or

Random Cov. Mat. (λt = 1/
√
t)

N=2500

N=5000

N=7500

N=10000

1 2 4 8 16 32

Quadrature Sites (Q)

Random Cov. Mat. (λt = 1/t2)

1 2 4 8 16 32

Quadrature Sites (Q)

Random Matérn 5/2 Kernel Mat.

1 2 4 8 16 32

Quadrature Sites (Q)

10−6

10−4

10−2

100

R
el

at
iv

e
C

IQ
E

rr
or

Random Cov. Mat. (λt = 1/t)

N=2500

N=5000

N=7500

N=10000

1 2 4 8 16 32

Quadrature Sites (Q)

Random Cov. Mat. (λt = exp(−t))

1 2 4 8 16 32

Quadrature Sites (Q)

Random RBF Kernel Mat.

Figure 5.1: msMINRES-CIQ relative error at computing K1/2b as a function of
number of quadrature points Q. We test random matrices with eigenvalues that
scale as λt = 1/

√
t (top left), λt = 1/t (bottom left), λt = 1/t2 (top middle), and

λt = e−t (bottom middle). Additionally, we test random Matérn/RBF kernel
matrices (top right/bottom right). In all cases Q = 8 achieves < 10−4 error.

(N). msMINRES-CIQ and Cholesky-based sampling tend to have very similar

empirical covariance error. On the other hand, the Random Fourier Features

method [Rahimi and Recht, 2008] (with 1,000 random features) incurs errors

up to 2× as large. This additional error is due to the randomness in the RFF

approximation.

Typically J = 100 msMINRES iterations suffices for convergence; how-

ever this number can be lowered with preconditioning. To demonstrate this,

we construct random N × N Matérn/RBF kernels K, applying CIQ to a set

of N orthonormal vectors ([K1/2b1, . . . ,K
1/2bN]), and compute the empirical

covariance. In Fig. 5.4 we plot the number of msMINRES iterations needed

to achieve a relative error of 10−6. The pivoted Cholesky preconditioner of

Section 3.3—which forms a low-rank approximation of K—accelerates conver-

119

16 32 64 128 256 512 1024
0.00

0.25

0.50

0.75

1.00

R
el

at
iv

e
E

rr
o
r

Random Cov. Mat. (λt = 1/
√
t)

N=2500

N=5000

N=7500

16 32 64 128 256 512 1024

Random Cov. Mat. (λt = 1/t)

16 32 64 128 256 512 1024

Random Cov. Mat. (λt = 1/t2)

16 32 64 128 256 512 1024

Randomized SVD Rank (R)

0.00

0.25

0.50

0.75

1.00

R
el

at
iv

e
E

rr
o
r

Random Cov. Mat. (λt = exp(−t))

16 32 64 128 256 512 1024

Randomized SVD Rank (R)

Random RBF Kernel Mat.

16 32 64 128 256 512 1024

Randomized SVD Rank (R)

Random Matérn 5/2 Kernel Mat.

Figure 5.2: Randomized SVD relative error at computing K1/2b as a function
of approximation rank R. In all cases, randomized SVD is unable to achieve a
relative error better than about 0.25.

0 2500 5000 7500 10000

Matrix Size (N)

0.5

1.0

1.5

2.0

E
rr

o
r

Empirical Covariance Error (Protein)
Prior Covariance (RBF)

Method

Chol.

CIQ

RFF

0 2500 5000 7500 10000

Matrix Size (N)

0.10

0.15

0.20

E
rr

o
r

Empirical Covariance Error (Kin40K)
Prior Covariance (RBF)

Figure 5.3: Empirical covariance error (relative norm) of various sampling
methods (Cholesky, msMINRES-CIQ, and 1,000 Random Fourier Features
[Rahimi and Recht, 2008]). Empirical covariances are measured from 1,000 sam-
ples. RBF matrices are constructed from data in the Protein and Kin40k datasets
[Asuncion and Newman, 2007].

gence of msMINRES. Without preconditioning (i.e. rank=0), J = 100 iterations

are required for N = 7,500 matrices. With rank-100/rank-400 preconditioners,

iterations are cut by a factor of two/four.

120

0 200 400

Preconditioner Rank

20

40

60

80

100

m
sM

IN
R

E
S

It
er

at
io

n
s

(J
)

fo
r

10
−

6
E

rr
o
r

Matern 5/2 Kernel

N = 1000

N = 2000

N = 5000

N = 7500

0 200 400

Preconditioner Rank

20

40

60

80

100

m
sM

IN
R

E
S

It
er

a
ti

o
n

s
(J

)
fo

r
1
0
−

6
E

rr
o
r

RBF Kernel

N = 1000

N = 2000

N = 5000

N = 7500

Figure 5.4: Effect of preconditioning msMINRES-CIQ (random Matérn and
RBF kernels with a pivoted Cholesky preconditioner). Larger preconditioners
reduce the number of msMINRES iterations required to reach 10−6 error.

2500 5000 7500 10000

Matrix Size (N)

0

2

4

6

8

10

12

14

S
p

ee
d

u
p

ov
er

C
h

o
le

sk
y

1x Speedup

K−1/2b – RBF Kernel

RHS

1

8

64

256

2500 5000 7500 10000

Matrix Size (N)

1x Speedup

K−1/2b – Matérn 5/2 Kernel

Figure 5.5: Speedup of msMINRES-CIQ over Cholesky when computing for-
ward/backward passes of K−

1
2 b w/ varying number of right-hand-sides (RHS).

Speedup over Cholesky. We compare the wall-clock speedup of msMINRES-

CIQ over Cholesky in Fig. 5.5 on RBF/Matérn kernels.2 We compute K−1/2b

and its derivative on multiple right-hand-side (RHS) vectors. As N increases,

msMINRES-CIQ incurs a larger speedup (up to 15× faster than Cholesky). This

speedup is less pronounced when computing many RHSs simultaneously, as

2Q = 8. msMINRES is stopped after a residual of 10−4. Kernels are formed using data from
the Kin40k dataset [Asuncion and Newman, 2007]. Timings are performed on a NVIDIA 1070
GPU.

121

the cubic complexity of Cholesky is amortized across each RHS. Nevertheless,

msMINRES-CIQ is advantageous for matrices larger than N = 3,000 even when

simultaneously whitening 256 vectors.

5.4 Applications

In previous sections we showed, both theoretically and empirically, that

msMINRES-CIQ accurately computes K±1/2b while scaling better than tradi-

tional (Cholesky-based) methods. In this section we demonstrate applications

of this increased speed and scalability. In particular, we show that using CIQ

in conjunction with variational Gaussian processes and Bayesian optimization

facilitates higher-fidelity models that can be applied to large-scale problems.

5.4.1 Whitened Stochastic Variational Gaussian Processes

As a first application, we demonstrate that the msMINRES-CIQ whitening pro-

cedure K−1/2b can increase the fidelity of stochastic variational Gaussian pro-

cesses (SVGP) [Hensman et al., 2013, 2015b, Matthews, 2017]. Recall from Sec-

tion 2.1.7 that these models are used for non-conjugate likelihoods (e.g. binary

classification) or for large datasets that do not fit into memory. SVGP forms

an approximate posterior p(f(x) | X,y) ≈ q(f(x)) = Eq(u) [p (f(x) | u)] , where

u ∈ RM are inducing function values (see [Hensman et al., 2015b, Matthews,

2017] for a detailed derivation). q (u) is a Gaussian variational distribution pa-

rameterized by mean m ∈ RM and covariance S ∈ RM×M . m and S (as well

as the model’s kernel/likelihood hyperparameters) are chosen to maximize the

122

variational ELBO:

LELBO
{
q(u)=N [m,S]

}
=
∑N

i=1 Eq(f(x(i)))

[
log p(y(i) | f(x(i)))

]
−KL [q(u)‖p(u)] .

Rather than directly learning m and S, it is more common to learn the whitened

parameters [Kuss and Rasmussen, 2005, Matthews, 2017]:

m′ = K
−1/2
ZZ m, S′ = K

−1/2
ZZ SK

−1/2
ZZ .

Under these coordinates, the KL divergence term is 1
2
(m′>m′+Tr(S′)− log |S′|−

M),which doesn’t depend on p(u) and therefore is relatively simple to optimize.

The posterior distribution q(f(x)) = N [µ∗aprx (x) ,Var∗aprx (x)] is given by

µ∗aprx (x) = k>ZxK
− 1

2
ZZm′,

Var∗aprx (x) = k(x,x)− k>ZxK
− 1

2
ZZ (I− S′) K

− 1
2

ZZkZx.

(5.10)

Time and space complexity. During training, we repeatedly compute the

ELBO and its derivative, which requires computing Eq. (5.10) and its deriva-

tive for a minibatch of data points. Optimization typically requires up to 10,000

iterations of training [e.g. Salimbeni et al., 2018b]. We note that K
−1/2
ZZ b (and its

derivative) is the most expensive numerical operation during each ELBO com-

putation. If we use Cholesky to compute this operation, the time complexity

of SVGP training is O(M3). On the other hand, msMINRES-CIQ-based SVGP

training is only O(JM2), where J is the number of msMINRES iterations. Both

methods require O(M2) storage for the m′ and S′ parameters.

Natural gradient descent with msMINRES-CIQ. The size of the variational

parameters m′ and S′ grows quadratically with M . This poses a challenging

optimization problem for standard gradient descent methods. To adapt to the

123

large M regime, we rely on natural gradient descent (NGD) to optimize m′

and S′ [e.g. Hensman et al., 2012, Salimbeni et al., 2018b]. At a high level, these

methods perform the updates [m, S]← [m, S]−ϕFFF−1∇LELBO, where ϕ is a step

size,∇LELBO is the ELBO gradient, andFFF is the Fisher information matrix of the

variational parameters. Naı̈vely, each NGD step requires O(M3) computations

with m′ and S′, which would dominate the cost of CIQ-based SVGP. Fortunately,

we can derive a natural gradient update that only relies on matrix solves with S′,

which take O(JM2) time using preconditioned conjugate gradients. Therefore,

using NGD incurs the same quadratic asymptotic complexity as msMINRES-

CIQ. See Appendix C for the O(M2) NGD update equations.

Experimental details. We compare msMINRES-CIQ-SVGP against Cholesky-

SVGP on 3 large-scale datasets: a GIS dataset (3dRoad, D = 2), a monthly

precipitation dataset (Precipitation, D = 3), and a tree cover dataset (Cov-

type, D = 54). Each task has between N = 70,000 and N = 500,000 training

data points. For 3dRoad we use a Gaussian observation model. The Precipi-

tation dataset has noisier observations; therefore we apply a Student-T obser-

vation model. Finally, we reduce the CovType dataset to a binary classifica-

tion problem and apply a Bernoulli observation model. We train models with

103 ≤ M ≤ 104. Each dataset is randomly split into 75% training, 10% valida-

tion, and 15% testing sets; x and y values are scaled to be zero mean and unit

variance. All models use a constant mean and a Matérn 5/2 kernel, with length-

scales initialized to 0.01 and inducing points initialized by K-means clustering.

Each model is trained for 20 epochs with a minibatch size of 256.3 We alternate

3The batch size is 512 on the Covtype dataset due to its larger size.

124

between optimizing m′/S′ and the other parameters, using NGD for the former

and Adam [Kingma and Ba, 2015] for the latter. Each optimizer uses an initial

learning rate of 0.014, decayed by 10× at epochs 1, 5, 10, and 15. For CIQ we use

Q = 15 quadrature points. msMINRES terminates when the cj vectors achieve

a relative norm of 0.001 or after J = 200 iterations. Results are averaged over

three trials.

The 3dRoad and CovType datasets are available from the UCI reposi-

tory [Asuncion and Newman, 2007]. For 3dRoad, we only use the first two

features—corresponding to latitude and longitude. For CovType, we reduce

the 7-way classification problem to a binary problem (Cover Type ∈ {2, 3} ver-

sus Cover Type ∈ {0, 1, 4, 5, 6}). The Precipitation dataset is available from the

IRI/LDEO Climate Data Library.5 This spatio-temporal dataset aims to predict

the “WASP” index (Weighted Anomaly Standardized Precipitation) at various

latitudes/longitudes. Each data point corresponds to the WASP index for a

given year (between 2010 and 2019)—which is the average of monthly WASP

indices. In total, there are 10 years and 10,127 latitude/longitude coordinates,

for a total dataset size of 101,270.

Results. The two methods achieve very similar test-set negative log likeli-

hood (Fig. 5.6) and RMSE (Fig. 5.7). We note that there are small differences

in the optimization dynamics, which is to be expected since K
−1/2
ZZ kZx can differ

by an orthogonal transformation when computed with msMINRES-CIQ versus

4On the Precipitation dataset, the initial learning rate is 0.005 for NGD stability with the
Student-T likelihood.

5http://iridl.ldeo.columbia.edu/maproom/Global/Precipitation/WASP_
Indices.html

125

http://iridl.ldeo.columbia.edu/maproom/Global/Precipitation/WASP_Indices.html
http://iridl.ldeo.columbia.edu/maproom/Global/Precipitation/WASP_Indices.html

31 hrs

9.5 hrs

34 hrs

27.6 hrs

4.9 hrs

21 hrs 24 hrs

10 hrs

21 hrs

3.2x
faster

5.6x
faster

2.0x
faster

Figure 5.6: Negative log likelihood (NLL) of Cholesky versus msMINRES-CIQ
SVGP models. Left: 3dRoad dataset (N = 326155, D = 2, Gaussian likelihood).
Middle: Precipitation dataset (N = 75952, D = 3, Student-T likelihood). Right:
CoverType dataset (N = 435759, D = 54, Bernoulli likelihood). NLL improves
with more inducing points (M), and Cholesky and msMINRES-CIQ models
have similar performance. However msMINRES-CIQ models train faster than
their Cholesky counterparts.

0 5000 10000

M

0.20

0.25

0.30

R
M

S
E

3Droad (Gaussian)
N=326155

SVGP-Chol

SVGP-CIQ

0 5000 10000

M

0.50

0.55

0.60

R
M

S
E

Precip (Student-T)
N=75952

0 5000 10000

M

0.06

0.08
E

rr
or

Covtype (Bernoulli)
N=435759

Figure 5.7: Error of Cholesky versus msMINRES-CIQ SVGP models. Left:
3dRoad dataset RMSE (N = 326155, D = 2, Gaussian likelihood). Middle:
Precipitation dataset RMSE (N = 75952, D = 3, Student-T likelihood). Right:
CoverType dataset 0/1 error (N = 435759, D = 54, Bernoulli likelihood).

Cholesky. The key difference is the training time: with M = 5,000 inducing

points, msMINRES-CIQ models are up to 5.6x faster than Cholesky models (on

a Titan RTX GPU). Moreover, msMINRES-CIQ models with M = 8,000-10,000

take roughly the same amount of time as M = 5,000 Cholesky models. Note we

do not train M > 5,000 Cholesky models as doing so would require 2-10 days.

126

0 5000 10000

M

0.15

0.20

0.25

0.30

0.35
V

a
lu

e

o2 (Outputscale)
(Precip, Student-T)

SVGP-Chol

SVGP-CIQ

0 5000 10000

M

0.05

0.10

0.15

σ2
obs (Obs. Noise)

(Precip, Student-T)

0 5000 10000

M

3.0

3.5

4.0

4.5

ν (Deg. Freedom)
(Precip, Student-T)

Figure 5.8: Hyperparameters as a function of inducing points (M) for Chol-
SVGP and msMINRES-CIQ-SVGP (Precipitation dataset, Student-T likelihood).
AsM increases, the kernel outputscale (left) also increases. At the same time, the
estimated observational noise (middle) decreases as does the estimated degrees
of freedom (right), reflecting a heavier-tailed noise distribution. This suggests
that, with larger M , SVGP models can find more signal in the data.

Effects of increased inducing points. We find that accuracy improves with in-

creased M on all datasets. Scaling from M = 5,000 to M = 10,000 reduces test-

set NLL by 0.1 nats on the 3dRoad and Precipitation datasets. We find similar

reductions in predictive error. By scaling more readily to large M , msMINRES-

CIQ enables high-fidelity variational approximations that would be computa-

tionally prohibitive with Cholesky. We also find that increasing M changes the

values of the learned kernel/likelihood hyperparameters. In Fig. 5.8 we plot

the learned hyperparameters of the Precipitation SVGP models: (1) o2 (the ker-

nel outputscale)—which roughly corresponds to variance explained as “signal”

in the data; (2) σ2
obs—which roughly corresponds to variance explained away as

observational noise; and (3) ν (degrees of freedom)—which controls the tails of

the noise model (lower ν corresponds to heavier tails). As M increases, we find

that the observational noise parameter decreases by a factor of 4—down from

0.19 to 0.05—while the ν parameter also decreases. Models with largerM values

can more closely approximate the true posterior [Hensman et al., 2013]; there-

127

fore, we expect that the larger-M likelihoods more closely correspond to the

“true” parameters. This confirms findings from Bauer et al. [2016], who argue

that variational approximations with small M tend to overestimate the amount

of noise in datasets.

5.4.2 Posterior Sampling for Bayesian Optimization

The second application of msMINRES-CIQ we explore is Gaussian process

posterior sampling in the context of Bayesian optimization (BO) [e.g. Snoek

et al., 2012]. Many acquisition functions require drawing samples from poste-

riors [e.g. Frazier et al., 2009, Hernández-Lobato et al., 2014, Wang and Jegelka,

2017]. One canonical example is Thompson Sampling (TS) [Thompson, 1933,

Hernández-Lobato et al., 2017, Kandasamy et al., 2018]. TS trades off exploita-

tion of existing minima for exploration of new potential minima. TS chooses the

next query point x̃ as the minimizer of a sample drawn from the posterior. Let

X∗ = [x∗1, . . . ,x
∗
T] be a candidate set of possible query points. To choose the next

query point x̃, TS computes

x̃ = arg min
(
µ∗(X∗) + COV∗(X∗)

1
2ε
)
, ε ∼ N [0, I] . (5.11)

where µ∗(X∗) and COV∗(X∗) are the posterior mean and covariance of the

Gaussian process at the candidate set. The candidate set is often chosen using

a space-filling design, e.g. a Sobol sequence. The search space grows exponen-

tially with the dimension; therefore, we need large values of T to more densely

cover the search space for better optimization performance. Using Cholesky

to compute Eq. (5.11) incurs a O(T 3) computational cost and O(T 2) memory,

which severely limits the size of T . In comparison, msMINRES-CIQ only re-

quires O(T 2) computation and O(T) memory.

128

0 25 50 75 100
Number of evaluations

0.08

0.13

0.2

0.3

0.45

0.68

1.0

1.6

R
eg

re
t

6D Hartmann

0 125 250 375 500
Number of evaluations

20

30

45

65

95

135

200

300

R
eg

re
t

12D Lunar lander

Cholesky-1k

Cholesky-5k

CIQ-1k

CIQ-5k

CIQ-20k

CIQ-50k

RFF-50k

Figure 5.9: A comparison of sampling methods for Bayesian Optimization
(BO). BO is applied to the (left) Hartmann (D = 6) and (right) Lunar Lan-
der (D = 12) problems. Methods: Cholesky-〈T 〉 draws posterior samples
with Cholesky at T candidate points. CIQ-〈T 〉 draws posterior samples with
msMINRES-CIQ. RFF-50k uses random Fourier features to draw approximate
posterior samples at 50,000 candidate points. Larger T results in better opti-
mization. msMINRES-CIQ enables scaling to T ≥ 50,000. Each plot shows
mean regret with standard error in log-scale based on 30 replications.

Experimental details. The 6-dimensional Hartmann function is a classical test

problem in global optimization.6 There are 6 local minima and a global min-

imum with value −3.32237. We use a total of 100 evaluations with 10 initial

points. The 10 initial points are generated using a Latin hypercube design and

we use a batch size of 5. In each iteration, we draw 5 samples and select 5 new

trials to evaluate in parallel.

We consider the same setup and controller as in [Eriksson et al., 2019]

for the 12-dimensional Lunar Lander problem.7 The goal is to learn a

controller that minimizes fuel consumption and distance to a given land-

ing target while also preventing crashes. The state of the lunar lander

is given by its angle, position, and time derivatives. Given this state

6https://www.sfu.ca/˜ssurjano/hart6.html
7From the Open-AI gym: https://gym.openai.com/envs/LunarLander-v2

129

https://www.sfu.ca/~ssurjano/hart6.html
https://gym.openai.com/envs/LunarLander-v2

vector, the controller chooses one of the following four actions: a ∈

{do nothing, booster left, booster right, booster down}. The objective is the av-

erage final reward over a fixed constant set of 50 randomly generated terrains,

initial positions, and initial velocities. The optimal controller achieves an aver-

age reward of ≈ 309 over the 50 environments.

For both problems, we use a Matérn-5/2 kernel with ARD and a constant

mean function. The domain is scaled to [0, 1]d and we standardize the function

values before fitting the Gaussian process. The kernel hyperparameters are op-

timized using L-BFGS-B and we use the following bounds: (lengthscale) ` ∈

[0.01, 2.0], (signal variance) s2 ∈ [0.05, 50.0], (noise variance) σ2 ∈ [1e− 6, 1e− 2].

Additionally, we place a horseshoe prior on the noise variance as recommended

in [Snoek et al., 2012]. We add 1e−4 to the diagonal of the kernel matrix to im-

prove the conditioning and use a preconditioner of rank 200 for CIQ.

Baselines. We measure the performance of TS as a function of the candidate

set size T and consider T ∈ {1,000, 5,000, 20,000, 50,000}. We run Cholesky

(Cholesky-T) for T ∈ {1,000, 5,000} and msMINRES-CIQ (CIQ-T). Note that

it would be very challenging and impractical to use Cholesky with T ≥ 10,000,

due to its quadratic memory and cubic time complexity. In addition to Cholesky

and CIQ, we also compare to random Fourier features (RFF) [Rahimi and Recht,

2008] with 1,000 random features.

Optimization performance. We plot the mean regret with standard error

based on 30 replications in Fig. 5.9. By increasing T = 1,000 to T = 50,000,

the final regret achieved by CIQ is significantly lower on both problems. Large

candidate sets have previously only been possible with approximate sampling

130

methods like RFF. We note, however, that RFF with T = 50,000 is outperformed

by CIQ-50k on both problems.

5.5 Discussion

We have introduced msMINRES-CIQ—a MVM-based method for computing

K1/2b and K−1/2b. In sampling and whitening applications, msMINRES-CIQ

can be used as a O(N2) drop-in replacement for the O(N3) Cholesky decompo-

sition. Its scalability and GPU utilization enable us to use more inducing points

with SVGP models and larger candidate sets in Bayesian optimization. In all

applications, such increased fidelity results in better performance.

Advantages and disadvantages. One advantage of the Cholesky decomposi-

tion is its reusability. As discussed in Section 5.3, the cubic cost of computing

LL> is amortized when drawing O(M) samples or whitening O(M) vectors.

Conversely, applying msMINRES-CIQ to O(M) vectors would incur a O(M3)

cost, eroding its computational benefits. Thus, our method is primarily advan-

tageous in scenarios with a small number of right hand sides or where K is

too large to apply Cholesky. We also emphasize that msMINRES-CIQ—like all

Krylov methods—can take advantage of fast MVMs. Though this chapter fo-

cuses on applying this algorithm to dense matrices, we suggest that future work

explore applications involving sparse or structured matrices.

Scaling beyond M = 10,000 and T = 50,000. It has been common to use only

M ≈ 1,000 inducing points with SVGP models. In this chapter, we have used

131

an order of magnitude more inducing points which results in demonstrably better

predictive performance. As M continues to grow, the primary bottleneck of

msMINRES-CIQ-SVGP becomes the quadratic memory costs of the variational

parameters m′ and S′. While a scalable approximation of KZZ (with fast MVMs)

can reduce the computational cost of whitening, the S′ matrix in general does

not afford space-saving structure. Efficient variational parameterizations will

be necessary to scale to even larger M . This has been the topic of some recent

work [Wilson et al., 2016b, Cheng and Boots, 2017, Salimbeni et al., 2018a, Shi

et al., 2020].

Scaling msMINRES-CIQ Thompson sampling beyond T = 50,000 is to some

extent more straightforward, as it does not require storing learnable parame-

ters. Nevertheless, scaling T will naturally require more computation, which

may result in the acquisition function becoming increasingly computationally

demanding. The next section introduces a simple strategy to utilize multiple

GPUs/distributed resources to alleviate this bottleneck.

132

CHAPTER 6

SCALING EXACT GAUSSIAN PROCESSES TO MILLIONS OF DATA

POINTS

6.1 Introduction

In this final chapter, we combine the proposed methods from earlier chapters

to scale exact GPs well beyond what has previously been achieved. In particu-

lar, we train a Gaussian process on over a million data points without the use of

scalable approximations. Such a result would be intractable with standard GP

implementations that rely on the Cholesky decomposition. On the other hand,

BBMM and LOVE (1) effectively utilize GPU acceleration via matrix multiplica-

tion (Section 3.5); (2) achieve exponential convergence using a partial pivoted

Cholesky preconditioner (Section 3.3); (3) require relatively few iterations to

achieve convergence (Sections 3.5 and 4.5); and (4) more accurately solve lin-

ear systems than Cholesky-based approaches (Section 3.5).

While the past chapters address the computational efficiency of BBMM and

LOVE, we must still address the memory bottleneck. Exact GPs, unlike their

scalable counterparts, make use of dense N ×N training kernel matrices which

naı̈vely require quadratic memory. To overcome this limitation, we partition

and distribute kernel MVMs across GPUs in a Map-Reduce style fashion. This

reduces the memory requirement for GPs down to O(N), permitting scaling

beyond N ≈ 104. Our implementation uses the KeOps library [Charlier et al.,

2020] and a custom multi-GPU wrapper to implement these memory-efficient

MVMs.

133

In addition, we introduce a number of practical heuristics to accelerate train-

ing and maximally utilize parallelization. With a single GPU, exact GPs can be

trained in seconds forN ≈ 104, minutes forN ≈ 105, and hours forN ≈ 106. Af-

ter training, exact GP models can make predictions in milliseconds using the LOVE

method presented in Chapter 4.

Exact GPs vs scalable approximations. A natural question is whether exact

Gaussian processes are desirable for such large datasets. Even with LOVE

and BBMM, exact GPs require O(N2) computation. Many approximate meth-

ods have been introduced to reduce this asymptotic complexity, relying on a

mixture-of-experts [Deisenroth and Ng, 2015], inducing points [Snelson and

Ghahramani, 2006, Titsias, 2009, Wilson and Nickisch, 2015, Gardner et al.,

2018b], random feature expansions [Rahimi and Recht, 2008, Le et al., 2013,

Yang et al., 2015], tensor decompositions [Izmailov et al., 2018a, Evans and Nair,

2018], or stochastic variational optimization [Hensman et al., 2013, 2015b, Wil-

son et al., 2016b, Cheng and Boots, 2017, Salimbeni et al., 2018a, Shi et al., 2020].

Recent analysis demonstrates good convergence rates for GP approximations

under certain conditions [Burt et al., 2019]. Moreover, the BBMM, LOVE, and

CIQ algorithms can be used with a wide variety of GP models with almost no

additional implementation (see Section 3.4).

At the same time, there is reason to believe that exact methods are preferable

over scalable GP approximations if they are computationally feasible. Every

approximate method inherently makes biases and tradeoffs that may not work

with every dataset [Turner and Sahani, 2011, Bauer et al., 2016]. Choosing an

appropriate approximation is akin to a large hyperparameter search and may

require expert knowledge. Exact GPs offer a simplicity that is more generally

134

applicable and—as we will demonstrate—often more accurate.

We benchmark on large regression datasets from the UCI repository [Asun-

cion and Newman, 2007]. We find exact GPs offer notably better performance

than scalable approximations, often exceeding a two-fold reduction in root-

mean-squared error. Exact GPs continue to benefit from the addition of new

training points, a valuable conceptual finding in favor of non-parametric ap-

proaches. Moreover, our results clarify the relative performance of popular GP

approximations against exact GPs in the N ≥ 100,000 regime—a comparison

which has previously been considered intractable.

6.2 Adapting BBMM and LOVE to Large-Scale Exact GPs

The BBMM and LOVE methods presented in Chapters 3 and 4 effectively uti-

lize GPU acceleration and reduce the time complexity of GPs to O(N2). As we

will demonstrate, these advantages make it possible to scale exact GPs to very

large datasets—up to two orders of magnitude larger than what is possible with

Cholesky-based training/inference [Nguyen et al., 2019].

In this section, we make slight modifications to the BBMM and LOVE algo-

rithms for large-scale GPs. Firstly, we reduce the MVM memory requirements

to O(N) using partitioned and distributed kernel matrices. Secondly, we offer

practical guidelines to speed up BBMM convergence for large datasets.

135

6.2.1 Reducing Memory Requiremnts to O(N)

The primary input to the modified batched conjugate gradients (mBCG) algo-

rithm of Section 3.2 is mvm K̂XX, a black-box function that performs MVMs us-

ing the kernel matrix K̂XX. Each iteration of mBCG updates four (batches) of

vectors: c (the current solution), r (the current error), d (the “search” direction

for the next solution), and z (a preconditioned error term)—see Algorithms 2.3

and 3.1 for details. Storing these vectors requires exactly 4N space. In ad-

dtion, the mBCG algorithm stores the tridiagonal matrices for stochastic Lanc-

zos quadrature, which requires O(J) memory for J iterations of mBCG. There-

fore, the quadratic space cost associated with MVM-based exact GPs comes

from storing the matrix K̂XX.

Typically, mvm K̂XX is implemented by first computing the fullN×N kernel

matrix K̂XX. Although forming K̂XX requires O(N2) memory, the output of the

MVM K̂XXb requires only O(N) memory. By using a map-reduce style algorithm

for this computation, we can reduce the memory requirement of mvm K̂XX.

Partitioned kernel MVMs. We first partition the data matrix X ∈ RN×D into

P partitions, each of which contains roughly N/P data points:

X =

[
X(1); · · · ; X(P)

]
where we use “;” to denote row-wise concatenation. For each X(`), we can com-

pute K̂X(`)X, which is a roughly (N/P) × N kernel matrix. We can now rewrite

the training kernel matrix as a concatenation of the P partitions:

K̂XX =

[
K̂X(1)X; · · · ; K̂X(P)X

]
.

136

Computing each partition requires access to the full training set X, which we

assume fits in memory. However, each partition K̂X(`)X contains only 1/P of the

entries of the full kernel matrix. Rewriting the matrix-vector product K̂XXb in

terms of these partitions:

K̂XXb =

[
K̂X(1)Xb; · · · ; K̂X(P)Xb

]
,

we see that this MVM can be computed in smaller components by separately

computing each K̂X(`)Xb and concatenating the results. We discard each kernel

partition K̂X(`)X once its MVM has been computed. This MVM only allocates

new memory to temporarily store the (N/P)×N kernel matrix partition K̂X(`)X.

The other memory requirements (i.e. storing X and b) are linear in N .

This algorithm allows us to reduce memory usage in exchange for additional

yet easily parallelizable computations. If P = 1 then we have the naı̈ve O(N2)

memory MVM procedure. As P → N , mBCG will only require O(N) memory.

(After developing our own custom partitioned-MVM approach, we were

made aware of the KeOps software package [Charlier et al., 2020] which uses

low-level GPU code to speed up partitioned MVMs. With this library, parti-

tioned MVMs can even be faster than standard MVMs.)

Distributed parallel MVMs. MVM-based training/inference can easily take

advantage of multiple GPUs or distributed computational resources. Each

MVM partition K̂X(l)Xb can be performed on a different device. Additionally,

we note that distributed/parallel MVMs require only O(N) communication be-

tween devices (i.e. the memory required to share X and the partial output vector

K̂X(l)Xb). In contrast, distributing the Cholesky decomposition requires O(N2)

communication [Nguyen et al., 2019].

137

6.2.2 Practical Considerations

Preconditioning. As in Chapter 3, we use the partial pivoted Cholesky pre-

conditioner for training and computing predictive means. In Chapter 3 the pre-

conditioner size is typically limited to R = 5; however, we find that precondi-

tioners of size R = 100 provide a noticeable speed improvement for large GPs.

Computing a rank R partial pivoted Cholesky preconditioner requires only R

kernel matrix rows: a O(N) space dependence. While each partitioned MVM

computes the kernel sub-matrices from scratch, the preconditioner is computed

only once. Therefore, for large values of N it can be efficient to increase the size

of the preconditioner to reduce the number of mBCG iterations.

mBCG convergence criteria. Importantly, mBCG is not an approximate

method for performing linear solves. Rather, it is a method that performs solves

to a specified tolerance. If this tolerance is sufficiently tight, solve are exact up

to machine precision. Thus, it is analogous to using gradient descent for convex

optimization problems (which is in fact what is happening).

At test time, we find that (nearly) exact solves K̂−1
XXy are critical for good

predictive means. Therefore, we set the convergence criterion of CG to be

‖K̂XXc − y‖2/‖y‖2 ≤ 0.001, where c is the solution from mBCG. For hyper-

parameter optimization, we find that less strict tolerances are surprisingly suf-

ficient. A looser convergence criterion of up to ‖K̂XXc− y‖2/‖y‖2 = 1 has little

impact on final model performance.

Pre-training. On large datasets, each training iteration (i.e. each call to mBCG)

may take several minutes. We can reduce the total number of training iterations

138

by first initializing the hyperparameters to sensible defaults. As a simple ini-

tialization strategy, we pre-train exact Gaussian process models on a subset of

training data (e.g. N = 10,000). After this initialization, only a few iterations

(i.e. < 5 gradient descent steps) are necessary on the full dataset (see Fig. 6.2).

6.3 Results

We compare exact GPs against widely-used approximate methods on large-

scale datasets from the UCI repository [Asuncion and Newman, 2007]. These re-

sults are the first-ever comparison of exact versus approximate GPs onN � 105.

Our experiments demonstrate that exact GPs: (1) outperform popular approxi-

mate GPs methods on many benchmarking datasets; (2) compute thousands of

test-point predictions in milliseconds, even when N > 106; (3) utilize all avail-

able data when making predictions; and (4) achieve linear training speedups

when using multiple GPUs.

We compare exact GPs against two scalable GP approximations: Sparse

Gaussian Process Regression (SGPR) [Titsias, 2009] and Stochastic Variational

Gaussian Processes (SVGP) [Hensman et al., 2013]. These methods are widely

popular and general applicable, enabling a comparison over a wide range of

datasets. Unless otherwise stated, we use M = 512 for SGPR and M = 1,024 for

SVGP, which are common values for these methods [Matthews et al., 2017].

Experiment details. Each dataset is randomly split into 64% training, 16% val-

idation, and 20% testing sets. Data are scaled to be mean 0 and standard de-

viation 1 as measured by the training set. We use a constant prior mean and a

139

Matérn 3/2 kernel with a shared lengthscale for each dimension.

For exact GPs: we pre-train the model’s hyperparameters using a subset of

10,000 randomly selected training points. The sub-sampled model is optimized

with 10 steps of L-BFGS [Liu and Nocedal, 1989] and 10 steps of Adam [Kingma

and Ba, 2015] with step sizes of 0.1. After pre-training, we run 3 additional

iterations of Adam on the full dataset. For SGPR models: we optimize hyperpa-

rameters with 100 iterations of Adam, learning rate of 0.1. For SVGP models: we

jointly optimize the variational parameters and hyperparameters with Adam—

using a learning rate of 0.01 and a minibatch size of 1,024—for 100 epochs.

Exact GPs and SGPR are trained with BBMM, using a rank-100 partial

pivoted-Cholesky preconditioner. During training, the mBCG convergence tol-

erance is set to ‖K̂XXc − y‖2/‖y‖2 = 1. At test time, the mBCG tolerance is

set to 0.001. We use a rank-100 LOVE approximation of K̂−1
XX to compute pre-

dictive variances. On the HouseElectric dataset, the likelihood’s observational

noise is constrained to be ≥ 0.1 in order to regularize the poorly conditioned

kernel matrix. We use the KeOps library [Charlier et al., 2020] in conjunction

with our GPyTorch BBMM/LOVE implementations to perform partitioned ker-

nel MVMs.

Accuracy. Table 6.1 displays the test set RMSEs and negative log likelihoods

(NLLs) of exact GPs and their approximate counterparts. We find that exact

GPs achieve lower error than approximate methods on nearly every dataset.

Notably, on certain datasets like 3dRoad, exact GPs achieve a half or even a

quarter of the error of approximate methods.

Moreover, we also see approximate GP performance is dataset dependent.

140

Table 6.1: Performance of exact GPs and scalable approximations on large UCI
datasets (shared-lengthscale Matérn 3/2 kernels). All results are averaged over
3 trials; ± corresponds to 1 standard deviation. (We are unable to scale SGPR
to HouseElectric due to its memory requirements when M = 512.) Top: test set
root mean square error (RMSE). Bottom: test set negative log likelihood (NLL).

RMSE

Dataset N D
Exact GP
(BBMM)

SGPR
(M=512)

SVGP
(M=1,024)

PoleTele 9,600 26 0.151± 0.012 0.217± 0.002 0.215± 0.002
Elevators 10,623 18 0.394± 0.006 0.437± 0.018 0.399± 0.009

Bike 11,122 17 0.220± 0.002 0.362± 0.004 0.303± 0.004
Kin40K 25,600 8 0.099± 0.001 0.273± 0.025 0.268± 0.022
Protein 29,267 9 0.536± 0.012 0.656± 0.010 0.668± 0.005

KeggDirected 31,248 20 0.086± 0.005 0.104± 0.003 0.096± 0.001
CTslice 34,240 385 0.262± 0.448 0.218± 0.011 1.003± 0.005
KEGGU 40,708 27 0.118± 0.000 0.130± 0.001 0.124± 0.002
3dRoad 278,319 3 0.101± 0.007 0.661± 0.010 0.481± 0.002

Song 329,820 90 0.807± 0.024 0.803± 0.002 0.998± 0.000
Buzz 373,280 77 0.288± 0.018 0.300± 0.004 0.304± 0.012

HouseElectric 1,311,539 9 0.055± 0.000 —– 0.084± 0.005

NLL

Dataset N D
Exact GP
(BBMM)

SGPR
(M=512)

SVGP
(M=1,024)

PoleTele 9,600 26 −0.180± 0.036 −0.094± 0.008 −0.001± 0.008
Elevators 10,623 18 0.619± 0.054 0.580± 0.060 0.519± 0.022

Bike 11,122 17 0.119± 0.044 0.291± 0.032 0.272± 0.018
Kin40K 25,600 8 −0.258± 0.084 0.087± 0.067 0.236± 0.077
Protein 29,267 9 1.018± 0.056 0.970± 0.010 1.035± 0.006

KeggDirected 31,248 20 −0.199± 0.381 −1.123± 0.016 −0.940± 0.020
CTslice 34,240 385 −0.894± 0.188 −0.073± 0.097 1.422± 0.005
KEGGU 40,708 27 −0.419± 0.027 −0.984± 0.012 −0.666± 0.007
3dRoad 278,319 3 0.909± 0.001 0.943± 0.002 0.697± 0.002

Song 329,820 90 1.206± 0.024 1.213± 0.003 1.417± 0.000
Buzz 373,280 77 0.267± 0.028 0.106± 0.008 0.224± 0.050

HouseElectric 1,311,539 9 −0.152± 0.001 —– −1.010± 0.039

Neither SVGP nor SGPR consistently outperforms the other. Interestingly,

dataset size/dimensionality do not seem to influence their relative performance.

141

For example, though Protein and Kin40K are similar in size and have similar di-

mensionality, the approximate methods perform worse on Kin40K (relative to

the RMSE of exact GPs) than they do on Protein.

Training time. Table 6.2 (top) displays the training times for exact and ap-

proximate GPs. With the pre-training strategy, exact GPs on datasets with

N ≤ 50,000 can usually be trained in seconds. Datasets with N ≥ 50,000 can

be trained in minutes, while datasets with N ≥ 300,000 require hours. The ex-

act amount of training time is dataset dependent, which likely depends on the

conditioning of the training kernel matrices. Remarkably, exact GPs can often

be trained in less time than their approximate counterparts, despite having a larger

asymptotic complexity. Approximate GPs tend to require more optimization it-

erations to properly place inducing points. We also hypothesize that exact GPs

benefit more from GPU acceleration, as dense kernel matrices afford more MVM

parallelism than their low-rank approximations.

Prediction time. At test time, we find that the speed of exact GPs is compa-

rable to approximate methods at test time. Table 6.2 (bottom) displays the time

to compute 1,000 predictive means and variances. After the LOVE precomputa-

tion, exact GPs make predictions in milliseconds.

Training acceleration with multiple GPUs. As discussed in Section 6.2,

MVMs for training and predictions can be distributed across multiple devices.

Fig. 6.1 plots the speedup as more GPUs are used for training on the KEGGU,

3dRoad, Song, and Buzz datasets. (Speedups are measured on NVIDIA Tesla

V100-SXM2-32GB-LS GPUs without using the KeOps library.) Each of these

142

Table 6.2: Wall-clock time comparison of exact GPs versus approximate GPs on
large UCI datasets. Models are trained and evaluated on a single NVIDIA GTX
2080-TI GPU. (Asterisks (*) indicate measurements made using 8 V100 GPUs
without KeOps.) Top: training time for exact GPs and scalable approximations.
Bottom: precomputation and prediction times for exact GPs. “Precomputation”
refers to the LOVE cache computation. “Prediction” refers to predictive distri-
bution computations for 1,000 test points.

Training

Dataset N D
Exact GP
(BBMM)

SGPR
(M=512)

SVGP
(M=1,024)

PoleTele 9,600 26 41.5 s ± 1.1 69.5 s ± 20.5 68.7 s ± 4.1
Elevators 10,623 18 41.0 s ± 0.7 69.7 s ± 22.5 76.5 s ± 5.5

Bike 11,122 17 41.2 s ± 0.9 70.0 s ± 22.9 77.1 s ± 5.6
Kin40K 25,600 8 42.7 s ± 2.7 97.3 s ± 57.9 195.4 s ± 14.0
Protein 29,267 9 47.9 s ± 10 136.5 s ± 53.8 198.3 s ± 15.9

KeggDirected 31,248 20 51.0 s ± 6.3 132.0 s ± 65.6 228.2 s ± 22.9
CTslice 34,240 385 3.32 min ± 5.0 2.16 min ± 0.99 3.86 min ± 0.34
KEGGU 40,708 27 0.790 min ± 0.14 2.22 min ± 1.0 4.78 min ± 0.40
3dRoad 278,319 3 15.8 min ± 7.4 12.0 min ± 5.5 34.0 min ± 3.1

Song 329,820 90 4.22 min ± 3.7 7.88 min ± 3.1 39.6 min ± 3.1
Buzz 373,280 77 1.19 hr ± 0.39 0.486 hr ± 0.30 0.772 hr ± 0.05

HouseElectric 1,311,539 9 1.20 hr ± 0.04 —– 6.12 hr ± 0.08

Precomputation Prediction

Dataset N D
Exact GP
(BBMM)

Exact GP
(BBMM)

SGPR
(M=512)

SVGP
(M=1,024)

PoleTele 9,600 26 5.14 s 6 ms 6 ms 273 ms
Elevators 10,623 18 0.95 s 7 ms 7 ms 212 ms

Bike 11,122 17 0.38 s 7 ms 9 ms 182 ms
Kin40K 25,600 8 12.3 s 11 ms 12 ms 220 ms
Protein 29,267 9 7.53 s 14 ms 9 ms 146 ms

KeggDirected 31,248 20 8.06 s 15 ms 16 ms 143 ms
CTslice 34,240 385 7.57 s 22 ms 14 ms 133 ms
KEGGU 40,708 27 18.9 s 18 ms 13 ms 211 ms
3dRoad 278,319 3 118 m* 119 ms 68 ms 130 ms

Song 329,820 90 22.2 m* 123 ms 99 ms 134 ms
Buzz 373,280 77 42.6 m* 131 ms 114 ms 142 ms

HouseElectric 1,311,539 9 3.40 hr* 958 ms —– 166 ms

143

1 2 3 4 5 6 7 8

GPUs

2

4

6

8

S
p

ee
d

u
p

ov
er

1
G

P
U

KEGGU (N=40708)

1 2 3 4 5 6 7 8

GPUs

2

4

6

8

3DRoad (N=278319)

1 2 3 4 5 6 7 8

GPUs

2

4

6

8

S
p

ee
d

u
p

ov
er

1
G

P
U

Song (N=329820)

1 2 3 4 5 6 7 8

GPUs

2

4

6

8

Buzz (N=373280)

Figure 6.1: Speed of BBMM training using multi-GPU computation. On large
datasets, exact GPs with BBMM achieve a near linear speedup with more GPUs.
(Speedups are measured on NVIDIA Tesla V100-SXM2-32GB-LS GPUs.)

datasets achieve a nearly linear speedup up to 4 GPUs. The speedup is more

pronounced for the two large datasets (3dRoad and Song).

Initialization. In Fig. 6.2 we compare GP models with and without our pre-

training initialization scheme. The GPs with initialization are pre-trained on

a N = 10,000 subset of the training data before running a final 3 iterations of

Adam on the full dataset. The GPs without initialization are trained on the

full dataset for 100 iterations of Adam. On all datasets, the pre-trained models

achieve a comparable test set RMSE as the standard models. However, the pre-

trained models require an order of magnitude less training time.

144

po
l

ele
va

to
rs

bi
ke

ki
n4

0k

pr
ot
ein

ke
gg

di
re
ct
ed

ke
gg

un
di
re
ct
ed

3d
ro
ad

so
ng

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
es

t
R

M
S
E

s

Using initialization scheme

Using 100 steps of Adam

po
l

ele
va

to
rs

bi
ke

ki
n4

0k

pr
ot
ein

ke
gg

di
re
ct
ed

ke
gg

un
di
re
ct
ed

3d
ro
ad

so
ng

102

103

104

T
ra

in
in

g
ti
m

e
(s

ec
on

d
s)

Using initialization scheme

Using 100 steps of Adam

po
l

ele
va

to
rs

bi
ke

ki
n4

0k

pr
ot
ein

ke
gg

di
re
ct
ed

ke
gg

un
di
re
ct
ed

3d
ro
ad

so
ng

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
es

t
R

M
S
E

s

Using initialization scheme

Using 100 steps of Adam

po
l

ele
va

to
rs

bi
ke

ki
n4

0k

pr
ot
ein

ke
gg

di
re
ct
ed

ke
gg

un
di
re
ct
ed

3d
ro
ad

so
ng

102

103

104

T
ra

in
in

g
ti
m

e
(s

ec
on

d
s)

Using initialization scheme

Using 100 steps of Adam

Figure 6.2: Effect of pre-training-based initialization on GP accuracy/timing.

6.4 Ablation Studies

With BBMM and LOVE, we can better understand how exact GPs scale to

datasets with N � 104 compared to approximate GPs. Here, we demonstrate

145

0 10000 20000 30000 40000

Subsampled dataset size

0.12

0.13

0.14

0.15

0.16

R
M

S
E

KEGGU (N=40708)

Subsampled (Exact GP)

Full Dataset (SGPR M=512)

Full Dataset (SVGP M=1024)

Full Dataset (Exact GP)

0 100000 200000

Subsampled dataset size

0.2

0.4

0.6

3DRoad (N=278319)

0 100000 200000 300000

Subsampled dataset size

0.75

0.80

0.85

0.90

0.95

1.00

R
M

S
E

Song (N=329820)

Figure 6.3: Effect of subsampling on exact GP performance, as measured by
test set RMSE. Subsampled exact GPs outperform approximate GPs, even when
only quarter of the training set is used. Exact GP error continues to decrease as
data is added.

how the amount of data affects exact GP performance, and how the number of

inducing points affects the performance of approximate GPs.

Do GPs need the entire dataset? As non-parametric models, Gaussian pro-

cesses naturally adapt to the amount of data available. Fig. 6.3 shows an in-

crease in accuracy as we increase the amount of training data on the KEGGU,

3dRoad, and Song datasets. For each dataset, we subsample a fraction of the

data and plot the resulting test set RMSE as a function of training set size. As

expected, the error decreases monotonically as we increase the subsample size.

Fig. 6.3 also shows the performance of SGPR and SVGP models trained on the

entire dataset. Strikingly, in all three cases, an exact GP with less than a quarter of

the training data outperforms approximate GPs trained on the entire dataset.

146

0 1000 2000

Inducing Points (M)

0.25

0.30

0.35

R
M

S
E

Bike (N=11122)

0 1000 2000

Inducing Points (M)

0.55

0.60

0.65

0.70

0.75

Protein (N=29267)

SVGP

SGPR

Exact GP

Figure 6.4: Error of SVGP and SGPR models as a function of inducing points
(M). Both methods scale cubically with M . We are unable to run SGPR with
more than 1,024 inducing points on a single GPU. Exact GPs have lower error
than both methods.

Would more inducing points help? The results in Table 6.1 naturally raise the

question: “can approximate models with more inducing points recover the per-

formance of exact methods?” In Fig. 6.4, we plot test set RMSE on two datasets,

Bike and Protein, as a function of the number of inducing points. We note that in

theory the performance of SVGP and SGPR should match exact GPs as M → N

[Titsias, 2009, Hensman et al., 2013]. In practice however, the test RMSE of SGPR

and SVGP remains well above exact GPs, and adding more inducing points has

diminishing returns. We note that usingM inducing points introduces a M×M

matrix and a O(NM2 + M3) time complexity which makes it difficult to train

SGPR with M � 1024 inducing points. It is possible to combine partitioned

kernel MVMs with inducing-point methods to utilize even larger values of M .

However, as Fig. 6.4 and Table 6.1 show, it may be preferable to use the extra

computational resources to train an exact GP on more data rather than to train

an approximate GP with more inducing points.

147

6.5 Discussion

Historically for Gaussian processes, “a large dataset is one that contains over

a few thousand data points” [Hensman et al., 2013]. In this chapter, we have

extended exact GPs far beyond what has previously been thought possible—

applying GPs to datasets with over a million training examples. In our exper-

iments, we find that exact GPs perform significantly better than approximate

methods on large datasets, while requiring fewer design choices.

Is CG still exact? In the GP literature, exact GP training and inference typically

refers to Cholesky-based inference with exact kernels [Rasmussen and Williams,

2006]. A natural question to ask is whether we can consider our approach “ex-

act” in light of the fact that mBCG perform solves only up to a pre-specified

error tolerance. However, unlike scalable GP approximations, the difference be-

tween a mBCG-based model and a theoretical model with “perfect” solves is

precisely controlled by this error tolerance. We therefore consider mBCG “ex-

act” in the context of mathematical optimization—namely that it computes so-

lutions up to arbitrary numerical precision. In fact, mBCG-based methods can

often be more precise than Cholesky based approaches in floating-point arith-

metic due to fewer round-off errors, as demonstrated in Chapter 3 (Fig. 3.3).

When to approximate? There are many scalable GP approximations with

varying statistical properties, advantages, and application regimes. We com-

pare against the SVGP and SGPR methods due to their popularity and general

applicability. There may be some regimes where other approximate methods

outperform these two approaches. Our objective in this chapter is not to per-

148

form an exhaustive study of approximate methods, but rather to highlight that

such comparisons are now possible.

Indeed, there are cases where approximate GP methods might still be prefer-

able, especially when computational resources are limited. In certain regimes,

such as low dimensional spaces, approximate methods like KISS-GP can achieve

high degrees of accuracy in less time than exact GPs [Wilson and Nickisch,

2015]. Additionally, GP inference with non-conjugate likelihoods necessitates

approximate Bayesian inference techniques (see Chapter 5).

Nevertheless, with efficient utilization of modern hardware, exact Gaussian

processes are now an appealing option on substantially larger datasets than pre-

viously thought possible. We expect exact GPs to become even more scalable

and accessible with continued advances in hardware design.

149

CHAPTER 7

CONCLUSION AND FUTURE DIRECTIONS

This thesis has presented a comprehensive framework for Gaussian process

training, inference, and prediction. The algorithms proposed in Chapters 3

to 5 are based around a single central design decision: reduce all expensive

matrix operations to parallelized matrix-vector multiplications (MVMs). Chap-

ter 3 introduced the Black-Box Matrix × Matrix (BBMM) framework which com-

putes GP training terms via a modified batched-conjugate gradients algorithm

(mBCG). To enable fast predictions with GP models, Chapter 4 presented Lanc-

zOs Variance Estimates (LOVE), which computes an amortized cache of the

predictive posterior. Finally, Chapter 5 introduced MVM-based Contour Inte-

gral Quadrature (msMINRES-CIQ) to “whiten” and “unwhiten” vectors with

respect to a Gaussian covariance—enabling the MVM-based training of stochas-

tic variational GP models and also allowing efficient posterior sampling.

The MVM theme simultaneously addresses several desiderata for Gaussian

processes. As demonstrated in Chapter 3, MVM-based methods effectively uti-

lize GPU hardware and reduce specialty implementations to ≤ 50 lines of code.

This makes it easy for researchers to rapidly prototype and test novel models

across a wide variety of datasets. MVM-based methods also lead to faster, more

powerful models. Chapter 4 significantly reduces computational costs of GPs at

test-time, while Chapter 5 scales up variational approximations and large-scale

sampling, leading to better predictions and black-box optimization. Combined,

these methods expand what is considered tractable for Gaussian processes, as

demonstrated in the N = 1,000,000 exact GP experiments of Chapter 6.

150

7.1 Beyond Matrix-Vector Multiplication

The framework presented in this thesis makes GPs increasingly practical on

massive datasets. Large-scale problems allow for more powerful classes of GP-

based models, which in turn opens up many exciting research problems.

To increase the representational capacity of Gaussian processes, researchers

have proposed highly-parametric kernels [Wilson and Adams, 2013, Wilson

et al., 2016b], using GPs as components of larger pipelines [Schulam and Saria,

2015, Futoma et al., 2017], and hierarchical GP models [Wilson et al., 2012, Sal-

imbeni and Deisenroth, 2017, Jankowiak et al., 2020a]. Of course, the additional

complexity of these approaches may pose new training and inference chal-

lenges. Advances in large-scale optimization have mostly targeted the piece-

wise linear geometry of ReLU neural networks and may need to be adapted to

the geometry of Gaussian process-based models. This is especially true for GP

models that use alternative objective functions for learning [Sheth and Khardon,

2017, Knoblauch et al., 2019, Jankowiak et al., 2020b]. Moreover, hierarchical GP

models are more computationally intensive than simpler models. Such models

necessitate parametric approximations, as exact inference is intractable. Con-

sequentially, increasing the fidelity of these models (e.g. stacking more layers,

using more inducing points) increases the number of parameters, which may

become an optimization or test-time bottleneck. It is worth noting that these

problems are not unique to large-scale Gaussian processes—they are also issues

of other large-scale machine learning models. Addressing these challenges in

the context of GPs however is a relatively new area of research, as these models

have only recently been considered practical.

151

7.2 Beyond Gaussian Processes

A key insight of this thesis is that non-linear operations on large-scale kernel

matrices are surprisingly tractable when used in conjunction with GPU accel-

eration and efficient numerical techniques. While we motivate this finding

through GPs, it is worth noting that the algorithms presented here are appli-

cable to other classes of models. For example, a common relaxation to optimal

transport problems is solved via Sinkhorn iterations [Cuturi, 2013], which rely

on iterative MVMs with an exponentiated distance matrix. Second-order op-

timization is another application where large-scale solves are necessary. GPU-

accelerated MVMs may make such methods applicable to higher dimensional

problems [Koh and Liang, 2017].

More generally, machine learning in recent years has shied away from com-

plex matrix operations. Many modern algorithms instead derive expressive

power through the composition of linear and element-wise functions [Goodfel-

low et al., 2016]. While deep neural networks demonstrate the merit of this ap-

proach, it is possible that incorporating more complex matrix operations could

improve parameter efficiency and model capacity [Jankowiak et al., 2020a]. The

ability to efficiently compute arbitrary functions of big matrices opens up pos-

sibilities well beyond large-scale Gaussian process models.

152

APPENDIX A

CONVERGENCE ANALYSIS OF PRECONDITIONED MBCG

A.1 Proof of Theorems in Section 3.3.2

Here we include theorems and proofs about the partial pivoted Cholesky pre-

conditioner applied to mBCG. All theorems are restated from Section 3.3.2.

A.1.1 Proof of Lemma 3.1

Lemma 3.1 (Restated). Let L̄R be the rank-R pivoted Cholesky factor of kernel matrix

KXX ∈ RN×N . If the first R eigenvalues λ1, . . ., λR of KXX satisfy

4iλi ≤ O
(
e−Bi

)
, i ∈ {1, . . . , R}, (3.8)

for some B > 0, then the condition number κ(P̂−1K̂XX) , ‖P̂−1
k K̂XX‖2‖K̂−1

XXP̂k‖2

satisfies the following bound:

κ
(
P̂−1K̂XX

)
≤
(

1 +O
(
σ−2

obsNe
−BR))2

where P̂ =
(
L̄RL̄>R + σ2

obsI
)

and K̂XX = (KXX + σ2
obsI).

Proof. Let E be the difference between KXX and its rank-R pivoted Cholesky

approximation L̄RL̄>R:

E = KXX − L̄RL̄>R =

0 0

0 S̄R+1



153

where S̄R+1 is the Schur compliment that arises as the Cholesky error term—

Eq. (2.20). The error E is therefore a positive semi definite matrix. By definition,

the condition number κ(P̂−1K̂XX) is given by

κ
(
P̂−1K̂XX

)
,
∥∥∥P̂−1K̂XX

∥∥∥
2

∥∥∥K̂−1
XXP̂

∥∥∥
2

The left term can be rewritten as:

∥∥∥P̂−1K̂XX

∥∥∥
2

=
∥∥∥(L̄RL̄>R + σ2

obsI
)−1 (

KXX + σ2
obsI
)∥∥∥

2

=
∥∥∥(L̄RL̄>R + σ2

obsI
)−1 (

L̄RL̄>R + E + σ2
obsI
)∥∥∥

2

=
∥∥∥I +

(
L̄RL̄>R + σ2

obsI
)−1

E
∥∥∥

2

Similarly, the right term is:∥∥∥K̂−1
XXP̂

∥∥∥
2

=
∥∥∥(L̄RL̄>R + σ2

obsI
) (

KXX + σ2
obsI
)−1
∥∥∥

2

=
∥∥∥(KXX − E + σ2

obsI
) (

KXX + σ2
obsI
)−1
∥∥∥

2

=
∥∥∥I− (KXX + σ2

obsI
)−1

E
∥∥∥

2

Since KXX and L̄RL̄>R are both positive semi-definite, (KXX +σ2
obs) and (L̄RL̄>R +

σ2
obs) will both have a minimum eigenvalue λmin ≥ σ2

obs. Therefore,∥∥∥(KXX + σ2
obs

)−1
∥∥∥

2
≤ σ−2

obs,
∥∥∥(L̄RL̄>R + σ2

obs

)−1
∥∥∥

2
≤ σ−2

obs.

Applying these bound, along with Cauchy-Schwarz and the triangle inequality,

gives us

κ
(
P̂−1K̂XX

)
≤
(

1 +
∥∥∥(L̄RL̄>R + σ2

obsI
)−1
∥∥∥

2
‖E‖2

)(
1 +

∥∥∥(KXX + σ2
obsI
)−1
∥∥∥

2
‖E‖2

)
≤
(
1 + σ−2

obs‖E‖2

) (
1 + σ−2

obs‖E‖2

)
=
(
1 + σ−2

obs‖E‖2

)2
. (A.1)

154

Since E is positive semi-definite, we have that ‖E‖2 ≤ Tr(E). The eigenvalue

condition from Eq. (3.8) allows us to bound Tr(E) using Theorem 2.1:

‖E‖2 ≤ Tr (E) = Tr
(
KXX − L̄RL̄>R

)
≤ O

(
Ne−BR

)
. (A.2)

Plugging Eq. (A.2) into Eq. (A.1) completes the proof.

A.1.2 Proof of Theorem 3.1

Theorem 3.1 (Restated). Let KXX ∈ RN×N be a N × N kernel that satisfies the

eigenvalue condition of Eq. (3.8), and let L̄R be its rank-R pivoted Cholesky factor.

After J iterations of mBCG with preconditioner P̂ = (L̄RL̄>R + σ2
obsI), the difference

between cJ and true solution K̂−1
XXy is bounded by:

∥∥∥K̂−1
XXy − cJ

∥∥∥
K̂XX

≤
[

1

1 +O(σ2
obse

RB/N)

]J ∥∥∥K̂−1
XXy

∥∥∥
K̂XX

,

where K̂XX = (KXX + σ2
obsI) and B > 0 is a constant.

Proof. Since Eq. (3.8) holds, we can simply plug Lemma 3.1 into the standard

CG convergence bound (Theorem 2.2):

∥∥∥K̂−1
XXy − cJ

∥∥∥
K̂XX

≤ 2


√
κ
(
P̂−1K̂XX

)
− 1√

κ
(
P̂−1K̂XX

)
+ 1


J ∥∥∥K̂−1

XXy
∥∥∥
K̂XX

≤ 2

[
1 +O(σ−2

obsNe
−BR)− 1

1 +O(σ−2
obsNe

−BR) + 1

]J ∥∥∥K̂−1
XXy

∥∥∥
K̂XX

=

[
1

1 +O(σ2
obse

RB/N)

]J ∥∥∥K̂−1
XXy

∥∥∥
K̂XX

.

155

A.1.3 Proof of Theorem 3.2

Theorem 3.2 (Restated). Assume KXX ∈ RN×N satisfies the eigenvalue condition of

Eq. (3.8). Suppose we estimate Γ ≈ log |P̂−1K̂XX| using Eq. (3.5) with:

• J ≥ O
[
(1 + σ−2

obsNe
−BR) log

(
(1 + σ−2

obsNe
−BR)/ε

)]
iterations of mBCG (for

some constant B > 0), and

• T ≥ 32
ε2

log
(

2
δ

)
random z(i) ∼ N [0, P̂] vectors.

Then the error of the stochastic Lanczos quadrature estimate Γ is probabilistically

bounded by:

Pr
[∣∣∣log |P̂−1K̂XX| − Γ

∣∣∣ ≤ εN
]
≥ (1− δ) .

Proof. Since Eq. (3.8) holds, we can simply plug Lemma 3.1 into the stochastic

Lanczos quadrature bound of Ubaru et al. [2017] (Theorem 2.3).

A.2 Applying Theorems 3.1 and 3.2 to Univariate RBF Kernels

Our convergence theory depends on the assumption that the eigenvalues of

KXX decay exponentially. A natural question is when this assumption holds

in practice. It happens that one can prove a concrete bound on the eigenvalue

distribution of univariate RBF kernels:

Lemma A.1 (Lemma 3 of Gardner et al. [2018a]). Given x(1), . . . , x(N) ∈ [0, 1], the

univariate RBF kernel matrix1 KXX ∈ RN×N with K(ij) = exp
(
−(x(i) − x(j))2/`2

)
1Here we drop the multiplicative outputscale parameter o2 without loss of generality.

156

has eigenvalues λ1, . . . , λk, . . . , λN bounded by:

λ2k+1 ≤ 2Ne−`
2/4Ik+1(γ/4) ∼ 2Ne−`

2/4

√
π`

(
e`2

8(k + 1)

)k+1

,

where Ik+1 denotes the modified Bessel function of the first kind with parameter k + 1.

In other words, the eigenvalues of univariate RBF kernels decay super-

exponentially, meeting the requirements of Eq. (3.8) in Lemma 3.1. Therefore,

the bounds given by Theorems 3.1 and 3.2 apply.

A proof of Lemma A.1 was included in a version of Chapter 3 that was pub-

lished at NeurIPS 2018 [Gardner et al., 2018a]. The proof itself is the work of my

co-authors David Bindel and Jacob R. Gardner—therefore I choose not to claim

credit for it as part of this thesis. It can be found in Appendix E of [Gardner

et al., 2018a].

We would also note that, while many kernels do not meet the eigenvalue cri-

terion of Lemma 3.1, most kernels have rapidly decaying eigenvalues and there-

fore achieve significantly faster convergence with the partial pivoted Cholesky

preconditioner. This is demonstrated by the empirical results in Section 3.5 and

Section 6.3.

157

APPENDIX B

DETAILS ON MSMINRES-CONTOUR INTEGRAL QUADRATURE

B.1 Selecting Quadrature Locations and Weights

Here we briefly describe the quadrature formula derived by Hale et al. [2008]

for use with Cauchy’s integral formula. We refer the reader to the original pub-

lication for more details.

Assume that K is a positive definite matrix, and thus has real positive eigen-

values. Our goal is to approximate Cauchy’s integral formula with a quadrature

estimate:

f(K) =
1

2πi

∮
Γ

f(τ) (τI−K)−1 dτ (B.1)

≈ 1

2πi

Q∑
q=1

w̃qf(τq) (τqI−K)−1 , (B.2)

where f(·) is analytic on and within Γ, and w̃q and τq are quadrature weights

and nodes respectively. Note that Eq. (B.1) holds true for any closed contour Γ

in the complex plane that winds once (counterclockwise) around the spectrum

of K.

A naı̈ve approach with uniformly-spaced quadrature. For now, assume that

λmin and λmax—the minimum and maximum eigenvalues of K—are known. (We

will later address how they can be efficiently estimated.) A naı̈ve first approach

to Eq. (B.2) is to uniformly place the quadrature locations in a circle that sur-

rounds the eigenvalues and avoids crossing the negative real axis, where we

158

anticipate f may be singular:

τq =
λmax + λmin

2
+
λmax

2
e2iπ(q/Q), w̃q =

1

Q
, q = 0, 1, . . . , Q− 1.

This corresponds to a standard trapezoid quadrature rule. However, Hale et al.

[2008] demonstrate that the convergence of this quadrature rule depends lin-

early on the condition number κ(K) = λmax/λmin. In particular, this is because

the integrand is only analytic in a narrow region around the chosen contour.

As many kernel matrices tend to be approximately low-rank and therefore ill-

conditioned, this simple quadrature rule requires large Q to achieve the desired

numerical accuracy.

Improving convergence with conformal mappings. Rather than uniformly

spacing the quadrature points, it makes more sense to place more quadra-

ture points near λmin and fewer near λmax. This can be accomplished by us-

ing the above trapezoid quadrature rule in a transformed parameter space that

is “stretched” near λmin and contracted near λmax. Mathematically, this is ac-

complished by applying a conformal mapping that moves the singularities to

the upper and lower boundaries of a periodic rectangle. We may then apply

the trapezoid rule along a contour traversing the middle of the rectangle—

maximizing the region in which the function we are integrating is analytic

around the contour.

B.1.1 A Specific Quadrature Formula for f(K) = K−1/2

Hale et al. [2008] suggest performing a change of variables that projects Eq. (B.1)

onto an annulus. Uniformly spaced quadrature points inside the annulus will

159

cluster near λmin when projected back into the complex plane. This change of

variables has a simple analytic formula involving Jacobi elliptic functions (see

[Hale et al., 2008, Sec. 2] for details). In the special case of f(K) = K−1/2, we can

utilize an additional change of variables for an even more efficient quadrature

formulation [Hale et al., 2008, Sec. 4]. Setting σ = τ 1/2, we have

K−
1
2 =

1

πi

∮
Γs

(
σ2I−K

)−1
dσ.

≈ 1

πi

Q∑
q=1

w̃q
(
σ2
qI−K

)−1
, (B.3)

where Γσ is a contour that surrounds the spectrum of K1/2. Since the integrand

is symmetric with respect to the real axis, we only need to consider the imag-

inary portion of Γσ. Consequently, all the τq quadrature locations (back in the

original space) will be real-valued and negative. Combining this square-root

change-of-variables with the annulus change-of-variables results in the follow-

ing quadrature weights/locations:

σ2
q = λmin

(
sn(iuqK′(k) | k)

)2

,

w̃q = −2
√
λmin

πQ
[K′(k) cn (iuqK′(k) | k) dn (iuqK′(k) | k)] ,

(B.4)

where we adopt the following notation:

• k =
√
λmin/λmax = 1/

√
κ(K);

• K′(k) is the complete elliptic integral of the first kind with respect to the

complimentary elliptic modulus k′ =
√

1− k2;

• uq = 1
Q

(q − 1
2
); and

• sn(· | k), cn(· | k), and dn(· | k) are the Jacobi elliptic functions with respect

to elliptic modulus k.

160

The weights w̃q and locations σ2
q from Eq. (B.4) happen to be real-valued and

negative. Setting tq = −σ2
q and wq = −w̃q gives us:

K−
1
2 ≈

Q∑
q=1

wq (tqI + K)−1 , wq = −w̃q > 0, tq = −σ2
q > 0. (B.5)

An immediate consequence of this is that the shifted matrices (tqI + K) are all

positive definite.

Convergence of the quadrature approximation. Due to the double change-

of-variables, the convergence of this quadrature rule in Eq. (B.4) is extremely

rapid—even for ill-conditioned matrices. Hale et al. prove the following error

bound:

Lemma B.1 (Hale et al. [2008], Thm. 4.1). Let t1, . . ., tQ > 0 and w1, . . ., wQ > 0 be

the locations and weights of Hale et al.’s quadrature procedure. The error of Eq. (5.3) is

bounded by:∥∥∥∥∥K
Q∑
q=1

wq (tqI + K)−1 −K
1
2

∥∥∥∥∥
2

≤ O
(

exp

(
− 2Qπ2

log κ(K) + 3

))
,

where κ(K) = λmax/λmin is the condition number of K.

Remarkably, the error of Eq. (5.3) is logarithmically dependent on the condition-

ing of K. Consequently, Q ≈ 8 quadrature points is even sufficient for ill-

conditioned matrices (e.g. κ(K) ≈ 104).

B.1.2 Estimating the Minimum and Maximum Eigenvalues

The equations for the quadrature weights/locations depend on the extreme

eigenvalues λmax and λmin of K. Using the Lanczos algorithm [Lanczos, 1950],

161

we can obtain accurate estimates of these extreme eigenvalues using relatively

few matrix-vector multiplies with K. To estimate λmin and λmax from Lanczos,

we perform an eigendecomposition of TJ (the tridiagonal Lanczos matrix after

J iterations—see Section 2.3.2). If J is small (i.e. J ≈ 10) then this eigendecom-

position requires minimal computational resources. In fact, as TJ is tridiagonal

invoking standard routines allows computation of all the eigenvalues in O(J2)

time. A well-known convergence result of the Lanczos algorithm is that the ex-

treme eigenvalues of TJ tend to converge rapidly to λmin and λmax [e.g. Saad,

2003, Golub and Van Loan, 2012]. Since the Lanczos algorithm always produces

underestimates of the largest eigenavlue and overestimates of the smallest it is

reasonable to use slightly larger and smaller values in the construction of the

quadrature scheme—as we see in Lemma B.1, the necessary number of quadra-

ture nodes is insensitive to small overestimates of the condition number.

B.1.3 The Complete Quadrature Algorithm

Algorithm B.1 obtains the quadrature weightswq and locations tq corresponding

to Eqs. (B.4) and (B.5). Computing these weights requires ≈ 10 matrix-vector

multiplies with K—corresponding to the Lanczos iterations—for a total time

complexity ofO(N). All computations involving elliptic integrals can be readily

computed using routines available in e.g. the SciPy library.

162

Algorithm B.1: Computing wq and tq for Contour Integral Quadrature.
Input : mvm K(·) – function for matrix-vector multiplication (MVM)

with matrix K
Q – number of quad. points

Output: w1, . . . , wQ, t1, . . . , tQ
// Estimate extreme eigenvalues with Lanczos.

,T← lanczos(mvm K(·)) // Lanczos w/ rand. init. vector

λmin, · · · , λmax← symeig(T)

// Compute elliptic integral of the first kind.

// We use the relation K′(k) = K(k′), where k′ =
√

1− k2 is the

complementary elliptic modulus.

k2← λmin/λmax // The squared elliptic modulus.

k′2←
√

1− k2 // The squared complementary elliptic modulus.

K′← ellipke(k′2) // K′ = K′(k)

// Compute each quadrature weight/location.

for q← 1 to Q do
uq ← (q − 1/2)/Q
// Compute Jacobi elliptic fn’s via Jacobi’s imaginary

transform.

// First we compute snq = sn(uqK′(k)|k′), cnq = cn(uqK′(k)|k′),
dnq = dn(uqK′(k)|k′).

snq, cnq, dnq ← ellipj(uqK′, k′2)
// Use identities to convert snq, cnq, dnq values into

// snq = sn(iuqK′(k)|k), cnq = cn(iuqK′(k)|k), dnq = dn(iuqK′(k)|k).

snq ← i [snq/cnq]
dnq ←

[
dnq/cnq

]
cnq ← [1/cnq]

// Quadrature weight wq and location tq

wq ← (−2λ
1/2
min)/(πQ) K′ cnq dnq

tq ← λmin (snq)
2

end
return w1, . . . , wQ, t1, . . . , tQ

B.2 Proof of Theorem 5.1

To prove the convergence result in Theorem 5.1, we first prove the following

lemmas.

Lemma B.2. Let K � 0 be symmetric positive definite and let shifts t1, . . ., tQ > 0 be

163

real-valued and positive. After J iterations of msMINRES, all shifted solve residuals

are bounded by:

∥∥(K + tqI)c
(q)
J − b

∥∥
2
≤
(√

κ(K + tqI)− 1

a
√
κ(K + tqI) + 1

)J

‖b‖2 ≤
(√

κ(K)− 1√
κ(K) + 1

)J

‖b‖2,

where b is the vector to solve against, c
(1)
J , . . ., c(Q) are the msMINRES outputs, and

κ(K) is the condition number of K.

Proof. The convergence proof uses a polynomial bound, which is the stan-

dard approach for Krylov algorithms. See [e.g. Shewchuk, 1994, Trefethen and

Bau III, 1997, Saad, 2003] for an analogous proof for the conjugate gradients

method and [e.g. Greenbaum, 1997] for a treatment of MINRES applied to both

positive definite and indefinite systems.

At iteration J , the msMINRES algorithm produces:

c
(q)
J = arg min

c(q)∈KJ (K,b)

[∥∥(K + tqI)c(q) − b
∥∥

2

]
, q = 1, . . . Q, (B.6)

where without loss of generality we assume c
(q)
0 = 0 for simplicity. Using the

fact that Krylov subspaces are shift invariant, we immediately have that

c
(q)
J = arg min

c(q)∈KJ (K+tqI,b)

[∥∥(K + tqI)c(q) − b
∥∥

2

]
, q = 1, . . . Q. (B.7)

Since (K + tqI) � 0 we may invoke a result on MINRES error bounds for sym-

metric positive definite matrices [Greenbaum, 1997, Chapter 3] to conclude that

∥∥(K + tqI)c
(q)
J − b

∥∥
2
≤
(√

κ(K + tqI)− 1√
κ(K + tqI) + 1

)J

‖b‖2.

Observing that κ(K + tqI) ≥ κ(K) for all q since tq > 0 concludes the proof.

Lemma B.2 is a very loose bound, as it doesn’t assume anything about the spec-

trum of K (which is standard for generic Krylov method error bounds) and up-

164

per bounds the residual error for every shift using the most ill-conditioned sys-

tem. In practice, we find that msMINRES converges for many covariance ma-

trices with J ≈ 100, even when the conditioning is on the order of κ(K) ≈ 104.

This convergence can be further improved with preconditioning.

Lemma B.3. For any positive definite K and positive t, we have√
κ(K + tI)− 1√
κ(K + tI) + 1

=

√
λmax + t−√λmin + t√
λmax + t+

√
λmin + t

<
λmax

4t
. (B.8)

Proof. We can upper bound the numerator:√
λmax + t−

√
λmin + t ≤

√
λmax + t−

√
t

=
√
λmax

(√
1 + t/λmax −

√
t/λmax

)
≤
√
λmax

1

2
√
t/λmax

=
λmax

2
√
t
,

where we have applied the standard inequality
√

(·) + 1 −
√

(·) < 1

2
√

(·)
. The

denominator can be (loosely) lower-bounded as 2
√
t. Combining these two

bounds completes the proof.

Lemma B.4. Let σ2
q and w̃q be defined as in Eq. (B.4). Then

Q∑
q=1

|wq|
|tq|

=

Q∑
q=1

|w̃q|
|σ2
q |
<

4Q log
(

5
√
κ(K)

)
π
√
λmin

where wq = −w̃q and tq = −σ2
q as used in Eq. (B.5).

Proof. Using facts about elliptical integrals we have

K′(k) < log(1 + 4/k) ≤ log(5/k) k ∈ (0, 1)

([Qiu et al., 1998, Thm. 1.7] and [Yang and Tian, 2019, Thm. 2])

π

2
≤ K(k) k ∈ [0, 1] ([e.g. Qiu et al., 1998])

165

where in the first statement we have used that K′(k) = K(k′). For Jacobi elliptic

functions we have that

0 < dn(uK(k)|k) < 1 u ∈ (0, 1), k ∈ (0, 1) ([e.g. Meyer, 2001])

0 < sn(uK(k)|k) < 1 u ∈ (0, 1), k ∈ (0, 1) ([e.g. Meyer, 2001])

sn(πu/2|0) < sn(uK(k)|k) < 1 u ∈ (0, 1), k ∈ (0, 1)

([Carlson and Todd, 1983, Thm. 1])

where in the last inequality we have used thatK(0) = π/2 [e.g. Abramowitz and

Stegun, 1948]. Coupling the final inequality above with sn(πu/2|0) = sin(πu/2)

for u ∈ (0, 1) we have that

sin(πu/2) < sn(uK(k)|k) < 1 u ∈ (0, 1), k ∈ (0, 1).

Now, for each q we have that

wq
tq

=
w̃q
σ2
q

=

(−2
√
λmin

πQλmin

) K′(k)cn (iuqK′(k) | k) dn (iuqK′(k) | k)

sn(iuqK′(k) | k)2

=

(
2K′(k)

πQλmin

)
dn (uqK(k′) | k′)
sn(uqK(k′) | k′)2

(via Jacobi imaginary transforms [e.g. Abramowitz and Stegun, 1948])

Consequently, we may conclude that

|wq|
|tq|

=

(
2K′(k)

πQλmin

)
dn (uqK(k′) | k′)
sn(uqK(k′) | k′)2

≤ 2 log(5/k)

πQλmin

(
1

sin2(πuq/2)

)
where we note that all quantities on the right hand side are positive. Plugging

in the values of k = 1/
√
κ(K), uq = (q − 1/2)/Q and summing over uq we see

that

Q∑
q=1

|wq|
|tq|

<

Q∑
q=1

2 log
(

5
√
κ(K)

)
πQ
√
λmin sin2(π(q−1/2)

2Q
)
. (B.9)

166

Through trigonometric identities:
∑Q

q=1 1/(Q sin2 π(q−1/2)
2Q

) = 2Q and, therefore,

Q∑
q=1

|wq|
|tq|

<
4Q log

(
5
√
κ(K)

)
π
√
λmin

.

With these lemmas we are now able to prove Theorem 5.1:

Theorem 5.1 (Restated). Let K � 0 and b be inputs to msMINRES-CIQ, producing

aJ ≈ K1/2b after J iterations withQ quadrature points. The difference between aJ and

K1/2b is bounded by:

∥∥∥aJ −K
1
2 b
∥∥∥

2
≤

Quadrature error

O
(

exp

(
− 2Qπ2

log κ(K) + 3

))

+

msMINRES error

2Q log
(

5
√
κ(K)

)
κ(K)

√
λmin

π

(√
κ(K)− 1√
κ(K) + 1

)J−1

‖b‖2 .

where λmax, λmin are the max and min eigenvalues of K, and κ(K) is the condition

number of K.

Proof. First we note that the msMINRES-CIQ solution aJ can be written as∑
i=1wqc

(q)
J , where c

(q)
J is the qth shifted solve ≈ (tqI + K)−1b from msMINRES.

167

Applying the triangle inequality we have:

∥∥∥aJ −K
1
2 b
∥∥∥

2
=

∥∥∥∥∥∥∥∥∥
msMINRES error

Q∑
q=1

wqc
(q)
J −

(
K

Q∑
q=1

wq (tqI + K)−1

)
b

+

(
K

Q∑
q=1

wq (tqI + K)−1

)
b−K

1
2 b

Quadrature error

∥∥∥∥∥∥∥∥∥∥
2

≤
Q∑
q=1

|wq|
∥∥∥c(q)

J −K (tqI + K)−1 b
∥∥∥

2

+

∥∥∥∥∥K
(

Q∑
q=1

wq (tqI + K)−1

)
b−K

1
2 b

∥∥∥∥∥
2

(B.10)

Plugging Lemma B.2 into the msMINRES part of the bound bound, we have:

Q∑
q=1

|wq|
(√

κ(K + tqI)− 1√
κ(K + tqI) + 1

)J

‖b‖2

≤
Q∑
q=1

|wq|
(√

κ(K + tqI)− 1√
κ(K + tqI) + 1

)(√
κ(K)− 1√
κ(K) + 1

)J−1

‖b‖2 (via Lemma B.2)

≤
Q∑
q=1

|wq|
(
λmax

4tq

)(√
κ(K)− 1√
κ(K) + 1

)J−1

‖b‖2 (via Lemma B.3)

≤
2Q log

(
5
√
κ(K)

)
λmax

π
√
λmin

(√
κ(K)− 1√
κ(K) + 1

)J−1

‖b‖2 (via Lemma B.4)

≤
2Q log

(
5
√
κ(K)

)√
λminκ(K)

π

(√
κ(K)− 1√
κ(K) + 1

)J−1

‖b‖2 .

Plugging this bound and Lemma B.1 into Eq. (B.10) completes the proof.

We can also prove this simple corollary:

Corollary B.1. Let K � 0 and b be the inputs to Algorithm 5.2, producing the output

a′J ≈ K−1/2b after J iterations with Q quadrature points. The difference between a′J

168

and K−1/2b is bounded by:

∥∥∥a′J −K−
1
2 b
∥∥∥

2
≤

Quadrature error

O
(

1

λmin
exp

(
− 2Qπ2

log κ(K) + 3

))

+

msMINRES error

2Q log
(

5
√
κ(K)

)
κ(K)

√
λminπ

(√
κ(K)− 1√
κ(K) + 1

)J−1

‖b‖2 .

where λmax, λmin are the maximal and minimal eigenvalues of K, and κ(K) is the con-

dition number of K.

Proof. Note that a′J = K−1aJ , where aJ is the msMINRES-CIQ estimate of K1/2b.

Using the sub-multiplicative property of the induced matrix 2-norm we see that∥∥∥a′J −K−
1
2 b
∥∥∥

2
≤
∥∥K−1

∥∥
2

∥∥∥aJ −K
1
2 b
∥∥∥

2
=

1

λmin

∥∥∥aJ −K
1
2 b
∥∥∥

2
,

where the final term is bounded by Theorem 5.1.

169

APPENDIX C

DETAILS ON NATURAL GRADIENT DESCENT WITH CIQ-BASED SVGP

When performing variational inference, we must optimize the m′ and S′ pa-

rameters of the whitened variational distribution q(u′) = N [m′,S′]. Rather than

using standard gradient descent methods on these parameters, many have sug-

gested that natural gradient descent (NGD) is better suited for variational infer-

ence [Hoffman et al., 2013, Hensman et al., 2012, Salimbeni et al., 2018b]. NGD

performs the following update:[
m′ S′

]
←
[
m′ S′

]
− ϕFFF−1

[
∂ELBO
∂m′

∂ELBO
∂S′

]
(C.1)

where ϕ is a step size,
[
∂ELBO
∂m′

∂ELBO
∂S′

]
is the ELBO gradient, and FFF is the Fisher

information matrix of the variational parameters. Conditioning the gradient with

FFF−1 results in descent directions that are better suited towards distributional

parameters [Hoffman et al., 2013].

For Gaussian distributions (and other exponential family distributions) the

Fisher information matrix does not need to be explicitly computed. Instead,

there is a simple closed-form update that relies on different parameterizations

of the Gaussian N [m′,S′]:[
θ Θ

]
←
[
θ Θ

]
− ϕ

[
∂ELBO
∂η

∂ELBO
∂H

]
. (C.2)

[θ, Θ] are the Gaussian’s natural parameters and [η, H] are the Gaussian’s expec-

tation parameters:

θ = S′−1m′, Θ = −1

2
S′−1,

η = m′, H = m′m′> + S′

170

In many NGD implementations, it is common to store the variational param-

eters via their natural representation (θ, Θ), compute the ELBO via the standard

parameters (m′, S′), and then compute the derivative via the expectation param-

eters (η, H). Unfortunately, converting between these three parameterizations

requires O(M3) computation. (To see why this is the case, note that computing

S′ essentially requires inverting the Θ matrix.)

A O(M2) NGD update. In what follows, we will demonstrate that the ELBO

and its derivative can be computed from θ and Θ in O(M2) time via careful

bookkeeping. Consequently, NGD updates have the same asymptotic complex-

ity as the other computations required for SVGP. Recall that the ELBO is given

by

ELBO =

expected log likelihood

N∑
i=1

E
q(f(x(i)))

[
log p(y(i) | f(x(i)))

]
−KL [q(u)‖p(u)]

We will separately analyze the expected log likelihood and KL divergence com-

putations.

C.1 The Expected Log Likelihood and its Gradient

Assume we are estimating the ELBO from a single data point x, y. The expected

log likelihood term of the ELBO is typically computed via Gauss-Hermite

quadrature or Monte Carlo integration [Hensman et al., 2015b]:1

E
q(f(x)

[log p(y | f(x))] =
S∑
s=1

wsp(y | fs), fs = µ∗aprx (x) + Var∗aprx (x)1/2 εs

1It can also be computed analytically for Gaussian distributions [Hensman et al., 2013]. The
analytic form achieves the same derivative decomposition as in Eq. (C.3) and so the following
analysis will still apply.

171

where ws are the quadrature weights (or 1/S for MC integration) and εs are the

quadrature locations (or samples from N [0, 1] for MC integration). Therefore,

the variational parameters only interact with the expected log likelihood term

via µ∗aprx (x) and Var∗aprx (x). We can write its gradients via chain rule as:

∂ Eq(f(x) [log p(y|f(x))]

∂η
= c1

∂µ∗aprx (x)

∂η
+ c2

∂Var∗aprx (x)

∂η

∂ Eq(f(x) [log p(y|f(x))]

∂H
= c3

∂µ∗aprx (x)

∂H
+ c4

∂Var∗aprx (x)

∂H
(C.3)

for some constants c1, c2, c3, and c4 that do not depend on the variational pa-

rameters. It thus suffices to show that the posterior mean/variance and their

gradients can be computed from θ and Θ in O(M2) time.

The predictive distribution and its gradient. All expensive computations in-

volving θ and Θ are written in blue.

µ∗aprx (x) and its derivative can be written as:

µ∗aprx (x) = k>ZxK
−1/2
ZZ m′ (standard parameters)

= k>ZxK
−1/2
ZZ η (expectation parameters)

= k>ZxK
−1/2
ZZ (−2Θ)−1θ, (C.4)

∂µ∗aprx (x)

∂η
= K

−1/2
ZZ kZx, (C.5)

∂µ∗aprx (x)

∂H
= 0.

172

Var∗aprx (x) and its derivative can be written as:

Var∗aprx (x) = k>ZxK
−1/2
ZZ (S′ − I) K

−1/2
ZZ kZx (standard parameters)

= k>ZxK
−1/2
ZZ

(
H− ηη> − I

)
K
−1/2
ZZ kZx (expectation parameters)

= k>ZxK
−1/2
ZZ

(
(−2Θ)−1 −I) K

−1/2
ZZ kZx, (C.6)

∂Var∗aprx (x)

∂η
= −2

(
k>ZxK

−1/2
ZZ (−2Θ)−1θ

)
K
−1/2
ZZ kZx, (C.7)

∂Var∗aprx (x)

∂H
=
(
K
−1/2
ZZ k>Zx

)(
k>ZxK

−1/2
ZZ

)
. (C.8)

In Eqs. (C.4) to (C.8), the only expensive operation involving KZZ is K
−1/2
ZZ kZx,

which can be computed with CIQ. The only expensive operation involving the

variational parameters is (−2Θ)−1K
−1/2
ZZ kZx, which can be computed with pre-

conditioned conjugate gradients after computing K
−1/2
ZZ kZx.2 Those operations

only need to be computed once, and then they can be reused across Eqs. (C.4)

to (C.8). In total, the entire computation for the expected log likelihood and its

derivative is O(M2).

C.2 The KL Divergence and its Gradient

We will demonstrate that the KL divergence and its gradient can be computed

from θ and Θ in O(M2) time. All expensive computations involving θ and Θ

are written in blue.

2We typically apply a Jacobi preconditioner to these solves.

173

The whitened KL divergence from Section 5.4.1 is given by:

KL [q(u′)‖p(u′)] =
1

2

[
m′>m′ + Tr (S′)− log |S′| −M

]
(standard parameters)

=
1

2

[
Tr (H)− log |H− ηη>| −M

]
(expectation parameters)

=
1

2

[
θ>(−2Θ)−2θ + Tr

(
(−2Θ)−1

)
+ log | − 2Θ| −M

]
. (C.9)

The KL derivative with respect to η and H is surprisingly simple when re-

written in terms of the natural parameters

∂KL [q(u′)‖p(u′)]

∂η
=
(
H− ηη>

)−1
η = (S′)−1η

= θ (C.10)

∂KL [q(u′)‖p(u′)]

∂H
=

1

2
I− 1

2

(
H− ηη>

)−1
=

1

2
I− 1

2
(S′)−1

=
1

2
I + Θ. (C.11)

Thus the derivative of the KL divergence only takes O(M2) time to compute.

The forward pass can also be computed in O(M2) time—using stochastic trace

estimation for the trace term [Cutajar et al., 2016, Gardner et al., 2018a], stochas-

tic Lanczos quadrature for the log determinant [Ubaru et al., 2017, Dong et al.,

2017], and CG for the solves. However, during training the forward pass can be

omitted as only the gradient is needed for NGD steps.

174

APPENDIX D

FULL GPYTORCH CODE EXAMPLES

The following are code examples for training and evaluating GPyTorch mod-

els.1 We include examples for a standard GP (with no approximations/ex-

ploitable structure) and a multitask GP. Both models can be modified to use

scalable methods by changing the covar module (i.e. kernel).

D.1 Standard GP Regression

Here we train a standard GP with a RBFKernel. As described in Sec-

tion 3.4, each kernel object outputs a LazyTensor object, which defines its own

matmul(·) function. If the kernel has exploitable structure—e.g.

• LinearKernel for Bayesian linear regression,

• GridInterpolationKernel wrapping a RBFKernel for KISS-GP,

then the kernel will output the appropriate LazyTensor subclass with a

structure-exploiting matmul(·) function for use with the mBCG algorithm.

import math
import torch
import gpytorch
from matplotlib import pyplot as plt

"""
Training data is 100 points in [0,1] inclusive regularly spaced
True function is sin(2*pi*x) with Gaussian noise
"""
train_x = torch.linspace(0, 1, 100)

1Tested against GPyTorch v1.1

175

train_y = torch.sin(train_x * (2 * math.pi)) + \
torch.randn(train_x.size()) * math.sqrt(0.04)

"""
Now we define a class for basic GP models
"""
class ExactGPModel(gpytorch.models.ExactGP):

def __init__(self, train_x, train_y, likelihood):
super(ExactGPModel, self).__init__(

train_x, train_y, likelihood
)
self.mean_module = gpytorch.means.ZeroMean()
We can implement specialty models by replacing
this kernel (e.g. LinearKernel.)
Each kernel uses a differen LazyTensor under the hood.
self.covar_module = gpytorch.kernels.ScaleKernel(

gpytorch.kernels.RBFKernel()
)
To implement KISS-GP, wrap this kernel inside al
gpytorch.kernels.GridInterpolationKernel

def forward(self, x):
mean_x = self.mean_module(x)
Our kernel module returns a NonLazyTensor object.
If we were to replace it with a LinearKernel,
the output would be a RootLazyTensor
covar_x = self.covar_module(x)
return gpytorch.distributions.MultivariateNormal(

mean_x, covar_x
)

"""
Create an instance of our model and likelihood
"""
likelihood = gpytorch.likelihoods.GaussianLikelihood()
model = ExactGPModel(train_x, train_y, likelihood)

"""
A basic training loop.
The GPyTorch objects in this loop use BBMM under the hood.
"""
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)

"Loss" for GPs - the marginal log likelihood
Calling this funcition uses BBMM to compute the marginal log
likelihood and its derivative
mll = gpytorch.mlls.ExactMarginalLogLikelihood(likelihood, model)

Training loop
model.train()
for i in range(100):

176

optimizer.zero_grad()
loss = -mll(model(train_x), train_y)
loss.backward()
optimizer.step()

"""
Making predictions.
We will use LOVE to for fast variances
"""
model.eval()
likelihood.eval()
The fast_pred_var context manager turns on LOVE variances
with torch.no_grad(), gpytorch.settings.fast_pred_var():

test_x = torch.linspace(0, 1, 51)
pred = likelihood(model(test_x))
Get mean prediction
mean = pred.mean
Get upper and lower confidence bounds
lower, upper = pred.confidence_region()

"""
Plotting the model fit
"""
f, ax = plt.subplots(1, 1, figsize=(4, 3))
Plot training data as black stars
ax.plot(train_x.numpy(), train_y.numpy(), "k*")
Plot prediction
ax.plot(test_x.numpy(), mean.numpy(), "b")
ax.fill_between(

test_x.numpy(), lower.numpy(), upper.numpy(), alpha=0.5
)
ax.set(ylim=[-3, 3], xlabel="x", ylabel="y")
ax.legend(["Observed Data", "Mean", "Confidence"])
f.show()

0.0 0.2 0.4 0.6 0.8 1.0

x

−3

−2

−1

0

1

2

3

y

Observed Data

Mean

Confidence

Figure D.1: Output plot from GPyTorch code example for standard GPs.

177

D.2 Multitask GP Regression

To demonstrate the modularity afforded by MVM methods, we also include

a code example of a multitask GP model. What’s notable is that this code

example is essentially the same as the standard GP code example. The only

major difference is the kernel module (MultitaskKernel), which uses the

(KroneckerProductLazyTensor) under the hood for efficient inference.

import math
import torch
import gpytorch
from matplotlib import pyplot as plt

"""
Training data is 100 points in [0,1] inclusive regularly spaced
We train two outputs: a sin function and a cos function

with Gaussian noise
"""
train_x = torch.linspace(0, 1, 100)
train_y = torch.stack([

torch.sin(train_x * (2 * math.pi)),
torch.cos(train_x * (2 * math.pi))

], -1)
train_y += torch.randn_like(train_y) * 0.2

"""
Now we define a class for multitask GP models
"""
class MultitaskGPModel(gpytorch.models.ExactGP):

def __init__(self, train_x, train_y, likelihood):
super(MultitaskGPModel, self).__init__(

train_x, train_y, likelihood
)
self.mean_module = gpytorch.means.MultitaskMean(

gpytorch.means.ZeroMean(), num_tasks=2
)
self.covar_module = gpytorch.kernels.MultitaskKernel(

gpytorch.kernels.RBFKernel(), num_tasks=2, rank=1
)

def forward(self, x):
mean_x = self.mean_module(x)
covar_x = self.covar_module(x)
return gpytorch.distributions.MultitaskMultivariateNormal(

178

mean_x, covar_x
)

"""
Create an instance of our model and likelihood
This example uses a MultitaskGaussianLikelihood to have seperate

observation noise for each task.
"""
likelihood = gpytorch.likelihoods.MultitaskGaussianLikelihood(

num_tasks=2
)
model = MultitaskGPModel(train_x, train_y, likelihood)

"""
Training with BBMM.
"""
optimizer = torch.optim.Adam(model.parameters(), lr=0.1)
mll = gpytorch.mlls.ExactMarginalLogLikelihood(likelihood, model)

model.train()
for i in range(100):

optimizer.zero_grad()
loss = -mll(model(train_x), train_y)
loss.backward()
optimizer.step()

"""
Making predictions with LOVE.
"""
model.eval()
likelihood.eval()
with torch.no_grad(), gpytorch.settings.fast_pred_var():

test_x = torch.linspace(0, 1, 51)
pred = likelihood(model(test_x))
mean = pred.mean
lower, upper = pred.confidence_region()

"""
Plotting the model fit
"""
f, (y1_ax, y2_ax) = plt.subplots(1, 2, figsize=(8, 3))
Plot training data as black stars
y1_ax.plot(

train_x.detach().numpy(), train_y[:, 0].detach().numpy(),
"k*"

)
y2_ax.plot(

train_x.detach().numpy(), train_y[:, 1].detach().numpy(),
"k*"

179

)
Plot predictions
y1_ax.plot(test_x.numpy(), mean[:, 0].numpy(), "b")
y2_ax.plot(test_x.numpy(), mean[:, 1].numpy(), "b")
Shade in confidence
y1_ax.fill_between(

test_x.numpy(), lower[:, 0].numpy(), upper[:, 0].numpy(),
alpha=0.5

)
y2_ax.fill_between(

test_x.numpy(), lower[:, 1].numpy(), upper[:, 1].numpy(),
alpha=0.5

)
Legend and axes
y1_ax.legend(["Observed Data", "Mean", "Confidence"])
y1_ax.set(ylim=[-3, 3], xlabel="x", ylabel="y1")
y2_ax.set(ylim=[-3, 3], xlabel="x", ylabel="y2")
f.show()

0.0 0.2 0.4 0.6 0.8 1.0

x

−3

−2

−1

0

1

2

3

y
1

Observed Data

Mean

Confidence

0.0 0.2 0.4 0.6 0.8 1.0

x

−3

−2

−1

0

1

2

3
y
2

Figure D.2: Output plot from GPyTorch code example for multitask GPs.

180

BIBLIOGRAPHY

Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jef-

frey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Is-

ard, et al. Tensorflow: A system for large-scale machine learning. In OSDI,

volume 16, pages 265–283, 2016.

Milton Abramowitz and Irene A. Stegun. Handbook of mathematical functions with

formulas, graphs, and mathematical tables, volume 55. US Government Printing

Office, 1948.

Sanjeev Arora, Simon S. Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-

grained analysis of optimization and generalization for overparameterized

two-layer neural networks. In ICML, 2019.

Arthur Asuncion and David Newman. UCI machine learning repository.

https://archive.ics.uci.edu/ml/, 2007. Last accessed: 2018-05-18.

Erlend Aune, Jo Eidsvik, and Yvo Pokern. Iterative numerical methods for sam-

pling from high dimensional Gaussian distributions. Statistics and Computing,

23(4):501–521, 2013.

Erlend Aune, Daniel P. Simpson, and Jo Eidsvik. Parameter estimation in high

dimensional Gaussian distributions. Statistics and Computing, 24(2):247–263,

2014.

Haim Avron and Sivan Toledo. Randomized algorithms for estimating the trace

of an implicit symmetric positive semi-definite matrix. Journal of the ACM, 58

(2):8, 2011.

Francis Bach. Sharp analysis of low-rank kernel matrix approximations. In

COLT, 2013.

181

https://archive.ics.uci.edu/ml/

Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton, Benjamin

Letham, Andrew Gordon Wilson, and Eytan Bakshy. BoTorch: Programmable

Bayesian optimization in PyTorch. arXiv preprint arXiv:1910.06403, 2019.

Matthias Bauer, Mark van der Wilk, and Carl Edward Rasmussen. Understand-

ing probabilistic sparse Gaussian process approximations. In NeurIPS, pages

1533–1541, 2016.

Gregory Benton, Wesley J. Maddox, Jayson Salkey, Julio Albinati, and An-

drew Gordon Wilson. Function-space distributions over kernels. In NeurIPS,

pages 14939–14950, 2019.

Eli Bingham, Jonathan P Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj

Pradhan, Theofanis Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, and

Noah D. Goodman. Pyro: Deep universal probabilistic programming. Journal

of Machine Learning Research, 20(1):973–978, 2019.

Christopher M. Bishop. Pattern recognition and machine learning. Springer, 2006.

Edwin V. Bonilla, Kian M. Chai, and Christopher Williams. Multi-task Gaussian

process prediction. In NeurIPS, 2008.

Christopher J. C. Burges. From ranknet to lambdarank to lambdamart: An

overview. Learning, 11(81):23–581, 2010.

David R. Burt, Carl Edward Rasmussen, and Mark Van Der Wilk. Rates of con-

vergence for sparse variational Gaussian process regression. In ICML, 2019.

Roberto Calandra, Jan Peters, Carl Edward Rasmussen, and Marc Deisenroth.

Manifold Gaussian processes for regression. In IJCNN, pages 3338–3345, 2016.

182

B. C. Carlson and John Todd. The degenerating behavior of elliptic functions.

Journal on Numerical Analysis, 20(6):1120–1129, 1983.

Benjamin Charlier, Jean Feydy, Joan Glaunès, François-David Collin, and Ghis-

lain Durif. Kernel operations on the GPU, with autodiff, without memory

overflows. 2020.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In

KDD, pages 785–794, 2016.

Ching-An Cheng and Byron Boots. Variational inference for Gaussian process

models with linear complexity. In NeurIPS, pages 5184–5194, 2017.

Sou-Cheng Choi. Iterative methods for singular linear equations and least-squares

problems. PhD thesis, 2006.

Edmond Chow and Yousef Saad. Preconditioned krylov subspace methods for

sampling multivariate Gaussian distributions. Journal on Scientific Computing,

36(2):A588–A608, 2014.

John P. Cunningham, Krishna V. Shenoy, and Maneesh Sahani. Fast Gaussian

process methods for point process intensity estimation. In ICML, 2008.

Kurt Cutajar, Michael Osborne, John Cunningham, and Maurizio Filippone.

Preconditioning kernel matrices. In ICML, 2016.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal trans-

port. In NeurIPS, pages 2292–2300, 2013.

Andreas Damianou and Neil Lawrence. Deep Gaussian processes. In AISTATS,

pages 207–215, 2013.

183

Biswa Nath Datta and Youcef Saad. Arnoldi methods for large Sylvester-like

observer matrix equations, and an associated algorithm for partial spectrum

assignment. Linear Algebra and its Applications, 154-156:225 – 244, 1991. ISSN

0024-3795.

Philip I. Davies and Nicholas J. Higham. Computing f(a)b for matrix functions

f . In QCD and Numerical Analysis III, pages 15–24. Springer, 2005.

Marc Deisenroth and Jun Wei Ng. Distributed Gaussian processes. In ICML,

pages 1481–1490, 2015.

Marc Deisenroth and Carl Edward Rasmussen. PILCO: A model-based and

data-efficient approach to policy search. In ICML, pages 465–472, 2011.

Marc Deisenroth, Dieter Fox, and Carl Edward Rasmussen. Gaussian processes

for data-efficient learning in robotics and control. Pattern Analysis and Machine

Intelligence, 37(2):408–423, 2015.

James W. Demmel. Applied numerical linear algebra, volume 56. SIAM, 1997.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-

training of deep bidirectional transformers for language understanding. In

NAACL, 2019.

Kun Dong, David Eriksson, Hannes Nickisch, David Bindel, and Andrew Gor-

don Wilson. Scalable log determinants for Gaussian process kernel learning.

In NeurIPS, 2017.

David Duvenaud, James Robert Lloyd, Roger Grosse, Joshua B. Tenenbaum,

and Zoubin Ghahramani. Structure discovery in nonparametric regression

through compositional kernel search. In ICML, 2013.

184

David Eriksson, Michael Pearce, Jacob Gardner, Ryan D. Turner, and Matthias

Poloczek. Scalable global optimization via local Bayesian optimization. In

NeurIPS, pages 5497–5508, 2019.

Trefor W. Evans and Prasanth B. Nair. Scalable Gaussian processes with grid-

structured eigenfunctions (GP-GRIEF). In ICML, 2018.

Jack Fitzsimons, Michael Osborne, Stephen J. Roberts, and Joseph F. Fitzsimons.

Improved stochastic trace estimation using mutually unbiased bases. In UAI,

2018.

Peter Frazier, Warren Powell, and Savas Dayanik. The knowledge-gradient pol-

icy for correlated normal beliefs. Journal on Computing, 21(4):599–613, 2009.

Roland Freund. On conjugate gradient type methods and polynomial precondi-

tioners for a class of complex non-Hermitian matrices. Numerische Mathematik,

57(1):285–312, 1990.

Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-

line learning and an application to boosting. Journal of Computer and System

Sciences, 55(1):119–139, 1997.

Jerome H. Friedman. Greedy function approximation: a gradient boosting ma-

chine. Annals of Statistics, pages 1189–1232, 2001.

Jerome H. Friedman. Stochastic gradient boosting. Computational Statistics and

Data Analysis, 38(4):367–378, 2002.

Joseph Futoma, Sanjay Hariharan, and Katherine Heller. Learning to detect sep-

sis with a multitask Gaussian process RNN classifier. In ICML, pages 1174–

1182, 2017.

185

Jacob R. Gardner, Chuan Guo, Kilian Q. Weinberger, Roman Garnett, and Roger

Grosse. Discovering and exploiting additive structure for Bayesian optimiza-

tion. In AISTATS, pages 1311–1319, 2017.

Jacob R. Gardner, Geoff Pleiss, Kilian Q. Weinberger, David Bindel, and An-

drew Gordon Wilson. GPyTorch: Blackbox matrix-matrix Gaussian process

inference with GPU acceleration. In NeurIPS, pages 7576–7586, 2018a.

Jacob R. Gardner, Geoff Pleiss, Ruihan Wu, Kilian Q. Weinberger, and An-

drew Gordon Wilson. Product kernel interpolation for scalable Gaussian pro-

cesses. In AISTATS, 2018b.

Gene H. Golub and Charles F. Van Loan. Matrix computations, volume 3. JHU

Press, 2012.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT Press,

2016. http://www.deeplearningbook.org.

GPy. GPy: A Gaussian process framework in Python. http://github.com/

SheffieldML/GPy, 2012.

Anne Greenbaum. Iterative Methods for Solving Linear Systems. SIAM, 1997.

Nicholas Hale, Nicholas J. Higham, and Lloyd N. Trefethen. Computing Aα,

log(A), and related matrix functions by contour integrals. Journal on Numerical

Analysis, 46(5):2505–2523, 2008.

Helmut Harbrecht, Michael Peters, and Reinhold Schneider. On the low-rank

approximation by the pivoted cholesky decomposition. Applied Mumerical

Mathematics, 62(4):428–440, 2012.

186

http://www.deeplearningbook.org
http://github.com/SheffieldML/GPy
http://github.com/SheffieldML/GPy

Marton Havasi, José Miguel Hernández-Lobato, and Juan José Murillo-Fuentes.

Inference in deep Gaussian processes using stochastic gradient Hamiltonian

Monte Carlo. In NeurIPS, pages 7506–7516, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-

ing for image recognition. In CVPR, 2016.

James Hensman, Magnus Rattray, and Neil D. Lawrence. Fast variational infer-

ence in the conjugate exponential family. In NeurIPS, pages 2888–2896, 2012.

James Hensman, Nicolo Fusi, and Neil D. Lawrence. Gaussian processes for big

data. In UAI, 2013.

James Hensman, Alexander G. de G. Matthews, Maurizio Filippone, and

Zoubin Ghahramani. Mcmc for variationally sparse Gaussian processes. In

NeurIPS, pages 1648–1656, 2015a.

James Hensman, Alexander G. de G. Matthews, and Zoubin Ghahramani. Scal-

able variational Gaussian process classification. In ICML, 2015b.

James Hensman, Nicolas Durrande, and Arno Solin. Variational Fourier fea-

tures for Gaussian processes. Journal of Machine Learning Research, 18(1):5537–

5588, 2017.

José Miguel Hernández-Lobato, Matthew W. Hoffman, and Zoubin Ghahra-

mani. Predictive entropy search for efficient global optimization of black-box

functions. In NeurIPS, pages 918–926, 2014.

José Miguel Hernández-Lobato, James Requeima, Edward O. Pyzer-Knapp, and

Alán Aspuru-Guzik. Parallel and distributed Thompson sampling for large-

scale accelerated exploration of chemical space. In ICML, pages 1470–1479,

2017.

187

Magnus R. Hestenes et al. Methods of conjugate gradients for solving linear

systems. Journal of Research of the National Bureau of Standards, 49(6):409–436,

1952.

Nicholas J. Higham. Functions of matrices: theory and computation, volume 104.

SIAM, 2008.

Matthew D. Hoffman, David Blei, Chong Wang, and John Paisley. Stochastic

variational inference. Journal of Machine Learning Research, 14(1):1303–1347,

2013.

Jeremy Howard. Training Imagenet in 3 hours for $25; and CIFAR10

for $0.26, Apr 2018. URL https://www.fast.ai/2018/04/30/

dawnbench-fastai/.

Gao Huang, Zhuang Liu, Kilian Q. Weinberger, and Laurens van der Maaten.

Densely connected convolutional networks. In CVPR, 2017.

Gao Huang, Zhuang Liu, Geoff Pleiss, Laurens Van Der Maaten, and Kilian Q.

Weinberger. Convolutional networks with dense connectivity. Pattern Analy-

sis and Machine Intelligence, 2019.

Michael F. Hutchinson. A stochastic estimator of the trace of the influence ma-

trix for laplacian smoothing splines. Communications in Statistics-Simulation

and Computation, 19(2):433–450, 1990.

Rob J. Hyndman. Time series data library. http://www-personal.buseco.

monash.edu.au/˜hyndman/TSDL/, 2005. Last accessed: 2018-05-18.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep

network training by reducing internal covariate shift. In ICML, 2015.

188

https://www.fast.ai/2018/04/30/dawnbench-fastai/
https://www.fast.ai/2018/04/30/dawnbench-fastai/
http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/
http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/

Pavel Izmailov, Alexander Novikov, and Dmitry Kropotov. Scalable Gaussian

processes with billions of inducing inputs via tensor train decomposition. In

AISTATS, pages 726–735, 2018a.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and An-

drew Gordon Wilson. Averaging weights leads to wider optima and better

generalization. In UAI, 2018b.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel:

Convergence and generalization in neural networks. In NeurIPS, pages 8571–

8580, 2018.

Martin Jankowiak, Geoff Pleiss, and Jacob R. Gardner. Deep sigma point pro-

cesses. In UAI, 2020a.

Martin Jankowiak, Geoff Pleiss, and Jacob R. Gardner. Parametric Gaussian

process regressors. In ICML, 2020b.

Beat Jegerlehner. Krylov space solvers for shifted linear systems. arXiv preprint

hep-lat/9612014, 1996.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,

Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional

architecture for fast feature embedding. In ACMMM, pages 675–678, 2014.

Kaggle. Kaggle’s state of data science and machine learning 2019. https:

//www.kaggle.com/c/kaggle-survey-2019, 2019.

Kirthevasan Kandasamy, Jeff Schneider, and Barnabás Póczos. High dimen-

sional Bayesian optimisation and bandits via additive models. In ICML, pages

295–304, 2015.

189

https://www.kaggle.com/c/kaggle-survey-2019
https://www.kaggle.com/c/kaggle-survey-2019

Kirthevasan Kandasamy, Akshay Krishnamurthy, Jeff Schneider, and Barnabás

Póczos. Parallelised Bayesian optimisation via Thompson sampling. In AIS-

TATS, pages 133–142, 2018.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,

Qiwei Ye, and Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting

decision tree. In NeurIPS, pages 3146–3154, 2017.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyan-

skiy, and Ping Tak Peter Tang. On large-batch training for deep learning:

Generalization gap and sharp minima. In ICLR, 2017.

Robert Keys. Cubic convolution interpolation for digital image processing.

Acoustics, Speech, and Signal Processing, 29(6):1153–1160, 1981.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-

tion. In ICLR, 2015.

Diederik P. Kingma and Max Welling. Auto-encoding variational Bayes. In

ICLR, 2014.

Jeremias Knoblauch, Jack Jewson, and Theodoros Damoulas. Generalized vari-

ational inference. arXiv preprint arXiv:1904.02063, 2019.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influ-

ence functions. In ICML, pages 1885–1894, 2017.

Malte Kuss and Carl Edward Rasmussen. Assessing approximate inference for

binary Gaussian process classification. Journal of Machine Learning Research, 6

(Oct):1679–1704, 2005.

190

Cornelius Lanczos. An iteration method for the solution of the eigenvalue problem

of linear differential and integral operators. United States Governm. Press Office

Los Angeles, CA, 1950.

Quoc Le, Tamás Sarlós, and Alex Smola. Fastfood: approximating kernel ex-

pansions in loglinear time. In ICML, 2013.

Yingzhen Li, José Miguel Hernández-Lobato, and Richard E. Turner. Stochastic

expectation propagation. In NeurIPS, pages 2323–2331, 2015.

Dong C. Liu and Jorge Nocedal. On the limited memory BFGS method for large

scale optimization. Mathematical Programming, 45(1-3):503–528, 1989.

Haitao Liu, Yew-Soon Ong, Xiaobo Shen, and Jianfei Cai. When Gaussian pro-

cess meets big data: A review of scalable GPs. Neural Networks and Learning

Systems, 2020.

Alexander G. de G. Matthews. Scalable Gaussian process inference using variational

methods. PhD thesis, University of Cambridge, 2017.

Alexander G. de G. Matthews, James Hensman, Richard Turner, and Zoubin

Ghahramani. On sparse variational methods and the kullback-leibler diver-

gence between stochastic processes. In AISTATS, pages 231–239, 2016.

Alexander G. de G. Matthews, Mark van der Wilk, Tom Nickson, Keisuke Fu-

jii, Alexis Boukouvalas, Pablo León-Villagrá, Zoubin Ghahramani, and James

Hensman. GPflow: A Gaussian process library using TensorFlow. Journal of

Machine Learning Research, 18(40):1–6, 2017.

Karl Meerbergen. The solution of parametrized symmetric linear systems. Jour-

nal on Matrix Analysis and Applications, 24(4):1038–1059, 2003.

191

Kenneth R. Meyer. Jacobi elliptic functions from a dynamical systems point of

view. The American Mathematical Monthly, 108(8):729–737, 2001.

Charles A. Micchelli, Yuesheng Xu, and Haizhang Zhang. Universal kernels.

Journal of Machine Learning Research, 7(Dec):2651–2667, 2006.

Thomas P. Minka. A family of algorithms for approximate Bayesian inference. PhD

thesis, Massachusetts Institute of Technology, 2001.

Iain Murray. Gaussian processes and fast matrix-vector multiplies. In ICML

Workshop on Numerical Mathematics in Machine Learning, 2009.

Iain Murray, Ryan Adams, and David MacKay. Elliptical slice sampling. In

AISTATS, pages 541–548, 2010.

Mojmir Mutny and Andreas Krause. Efficient high dimensional Bayesian opti-

mization with additivity and quadrature Fourier features. In NeurIPS, pages

9005–9016, 2018.

Duc-Trung Nguyen, Maurizio Filippone, and Pietro Michiardi. Exact Gaussian

process regression with distributed computations. In SAC, pages 1286–1295,

2019.

Christopher C. Paige. Practical use of the symmetric Lanczos process with re-

orthogonalization. BIT Numerical Mathematics, 10(2):183–195, 1970.

Christopher C. Paige and Michael A. Saunders. Solution of sparse indefinite

systems of linear equations. Journal on Numerical Analysis, 12(4):617–629, 1975.

Beresford N. Parlett. A new look at the Lanczos algorithm for solving symmetric

systems of linear equations. Linear Algebra and its Applications, 29:323–346,

1980.

192

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,

Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam

Lerer. Automatic differentiation in pytorch. In NeurIPS Autodiff Workshop,

2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-

gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,

et al. Pytorch: An imperative style, high-performance deep learning library.

In NeurIPS, pages 8024–8035, 2019.

S. L. Qiu, Mavina Krishna Vamanamurthy, and Matti Vuorinen. Some inequali-

ties for the growth of elliptic integrals. Journal on Mathematical Analysis, 29(5):

1224–1237, 1998.

Joaquin Quiñonero-Candela and Carl Edward Rasmussen. A unifying view of

sparse approximate Gaussian process regression. Journal of Machine Learning

Research, 6(Dec):1939–1959, 2005.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel ma-

chines. In NeurIPS, pages 1177–1184, 2008.

Carl Edward Rasmussen and Zoubin Ghahramani. Occam’s razor. In NeurIPS,

pages 294–300, 2001.

Carl Edward Rasmussen and Christopher Williams. Gaussian processes for ma-

chine learning, volume 1. MIT Press, 2006.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic back-

propagation and approximate inference in deep generative models. In ICML,

pages 1278–1286, 2014.

193

Matthew Richardson, Ewa Dominowska, and Robert Ragno. Predicting clicks:

estimating the click-through rate for new ads. In WWW, pages 521–530, 2007.

Farbod Roosta-Khorasani and Uri Ascher. Improved bounds on sample size for

implicit matrix trace estimators. Foundations of Computational Mathematics, 15

(5):1187–1212, 2015.

Youcef Saad. On the Lanczos method for solving symmetric linear systems with

several right-hand sides. Mathematics of Computation, 48(178):651–662, 1987.

Yousef Saad. Iterative methods for sparse linear systems, volume 82. SIAM, 2003.

Yunus Saatçi. Scalable inference for structured Gaussian process models. PhD thesis,

University of Cambridge, 2012.

Hugh Salimbeni and Marc Deisenroth. Doubly stochastic variational inference

for deep Gaussian processes. In NeurIPS, pages 4588–4599, 2017.

Hugh Salimbeni, Ching-An Cheng, Byron Boots, and Marc Deisenroth. Orthog-

onally decoupled variational Gaussian processes. In NeurIPS, pages 8711–

8720, 2018a.

Hugh Salimbeni, Stefanos Eleftheriadis, and James Hensman. Natural gradients

in practice: Non-conjugate variational inference in Gaussian process models.

In AISTATS, pages 689–697, 2018b.

Robert E. Schapire and Yoav Freund. Boosting: Foundations and algorithms.

Kybernetes, 2013.

Michael K. Schneider and Alan S. Willsky. Krylov subspace estimation. Journal

on Scientific Computing, 22(5):1840–1864, 2001.

194

Peter Schulam and Suchi Saria. A framework for individualizing predictions

of disease trajectories by exploiting multi-resolution structure. In NeurIPS,

pages 748–756, 2015.

Peter Schulam and Suchi Saria. What-if reasoning with counterfactual Gaussian

processes. In NeurIPS, 2017.

Rishit Sheth and Roni Khardon. Excess risk bounds for the bayes risk using

variational inference in latent Gaussian models. In NeurIPS, pages 5151–5161,

2017.

Jonathan Richard Shewchuk. An introduction to the conjugate gradient method

without the agonizing pain, 1994.

Jiaxin Shi, Michalis K. Titsias, and Andriy Mnih. Sparse orthogonal variational

inference for Gaussian processes. In AISTATS, 2020.

Bernhard W. Silverman. Some aspects of the spline smoothing approach to non-

parametric regression curve fitting. Journal of the Royal Statistical Society: Series

B (Methodological), 47(1):1–21, 1985.

Horst D. Simon. The Lanczos algorithm with partial reorthogonalization. Math-

ematics of Computation, 42(165):115–142, 1984.

Alex J. Smola and Peter L. Bartlett. Sparse greedy Gaussian process regression.

In NeurIPS, pages 619–625, 2001.

Edward Snelson and Zoubin Ghahramani. Sparse Gaussian processes using

pseudo-inputs. In NeurIPS, 2006.

Jasper Snoek, Hugo Larochelle, and Ryan Adams. Practical Bayesian optimiza-

tion of machine learning algorithms. In NeurIPS, pages 2951–2959, 2012.

195

Michael L Stein. Interpolation of spatial data: some theory for kriging. Springer

Science & Business Media, 2012.

William R. Thompson. On the likelihood that one unknown probability exceeds

another in view of the evidence of two samples. Biometrika, 25(3/4):285–294,

1933.

Michalis K. Titsias. Variational learning of inducing variables in sparse Gaussian

processes. In AISTATS, pages 567–574, 2009.

Lloyd N. Trefethen and David Bau III. Numerical linear algebra, volume 50. SIAM,

1997.

R. E. Turner and M. Sahani. Two problems with variational expectation max-

imisation for time-series models. In D. Barber, T. Cemgil, and S. Chiappa,

editors, Bayesian Time series models, chapter 5, pages 109–130. Cambridge Uni-

versity Press, 2011.

Stephen Tyree, Kilian Q. Weinberger, Kunal Agrawal, and Jennifer Paykin. Par-

allel boosted regression trees for web search ranking. In WWW, pages 387–

396, 2011.

Shashanka Ubaru, Jie Chen, and Yousef Saad. Fast estimation of Tr(f(A)) via

stochastic Lanczos quadrature. Journal on Matrix Analysis and Applications, 38

(4):1075–1099, 2017.

Henk A. Van der Vorst. Iterative Krylov methods for large linear systems, volume 13.

Cambridge University Press, 2003.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you

need. In NeurIPS, pages 5998–6008, 2017.

196

Zi Wang and Stefanie Jegelka. Max-value entropy search for efficient Bayesian

optimization. In ICML, 2017.

Zi Wang, Chengtao Li, Stefanie Jegelka, and Pushmeet Kohli. Batched high-

dimensional Bayesian optimization via structural kernel learning. In ICML,

2017.

Andrew Gordon Wilson. Covariance kernels for fast automatic pattern discovery

and extrapolation with Gaussian processes. PhD thesis, University of Cambridge,

2014.

Andrew Gordon Wilson and Ryan Adams. Gaussian process kernels for pattern

discovery and extrapolation. In ICML, pages 1067–1075, 2013.

Andrew Gordon Wilson and Hannes Nickisch. Kernel interpolation for scalable

structured Gaussian processes (KISS-GP). In ICML, 2015.

Andrew Gordon Wilson, David A. Knowles, and Zoubin Ghahramani. Gaus-

sian process regression networks. In ICML, 2012.

Andrew Gordon Wilson, Christoph Dann, and Hannes Nickisch. Thoughts on

massively scalable Gaussian processes. arXiv preprint arXiv:1511.01870, 2015.

Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P. Xing.

Deep kernel learning. In AISTATS, 2016a.

Andrew Gordon Wilson, Zhiting Hu, Ruslan R. Salakhutdinov, and Eric P. Xing.

Stochastic variational deep kernel learning. In NeurIPS, 2016b.

James T. Wilson, Viacheslav Borovitskiy, Alexander Terenin, Peter Mostowsky,

and Marc Deisenroth. Efficiently sampling functions from Gaussian process

posteriors. In ICML, 2020.

197

Zhen-Hang Yang and Jing-Feng Tian. Convexity and monotonicity for elliptic

integrals of the first kind and applications. Applicable Analysis and Discrete

Mathematics, 13(1):240–260, 2019.

Zichao Yang, Andrew Wilson, Alex Smola, and Le Song. A la carte–learning fast

kernels. In AISTATS, pages 1098–1106, 2015.

198

	Biographical Sketch
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	The Predictive Power of Gaussian Processes Models
	Practical Concerns with Gaussian Processes Models
	Computational Complexity and Memory Requirements
	Use of Modern Compute Hardware
	Choosing Appropriate Approximations
	Implementation and Programmability

	Outline of Contributions

	Background
	Gaussian Process Regression
	Gaussian Process Distributions
	Gaussian Process Regression Models
	Training Gaussian Process Models
	Common Covariance Functions
	Scalable Gaussian Processes
	Kernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP)
	Stochastic Variational Inference for Non-Conjugate/Large-Scale GPs
	Summary of Notation

	The Cholesky Factorization and its Pivoted Variant
	The Cholesky Factorization
	An Iterative View of the Cholesky Factorization
	The Partial Pivoted Cholesky Factorization

	Matrix-Vector Multiplication (MVM) Algorithms for Computing Linear Solves and Other Matrix Functions
	Linear Conjugate Gradients
	Lanczos Tridiagonalization
	Connection between CG and Lanczos
	MINRES

	Gaussian Process Training via Black-Box Matrix × Matrix Inference
	Introduction
	Gaussian Process Training Through Matrix Multiplication
	Modified Batched Conjugate Gradients (mBCG)
	Runtime and Space

	Preconditioning
	Modifying mBCG for Preconditioning
	The Partial Pivoted Cholesky Preconditioner for mBCG

	Programmability with BBMM
	GPyTorch's LazyTensor Construct
	Examples of LazyTensors and Specialty GP Models
	LazyTensors and Pivoted Cholesky Preconditioning

	Results
	Discussion

	Gaussian Process Predictions via Lanczos Variance Estimates
	Introduction
	Motivation
	Computing Predictive Means
	Computing (Co)-Variances without Pre-Computation

	LanczOs Variance Estimates (LOVE)
	Programmability

	LOVE with KISS-GP
	Constant-Time (Co)-Variances with KISS-GP + LOVE
	Predictive Distribution Sampling with LOVE + KISS-GP
	Extension to Additive KISS-GP Kernel Compositions

	Results
	Predictive Variances
	Sampling

	Discussion

	Variational Gaussian Processes Inference and Bayesian Optimization via Contour Integral Quadrature
	Introduction
	Contour Integral Quadrature (CIQ) via Matrix-Vector Multiplication
	An Efficient Matrix-Vector Multiplication Approach to CIQ with msMINRES
	Computational Complexity and Convergence Analysis of msMINRES-CIQ
	Efficient Vector-Jacobi Products for Backpropagation
	Preconditioning
	Related Work

	Benchmarking msMINRES-CIQ
	Applications
	Whitened Stochastic Variational Gaussian Processes
	Posterior Sampling for Bayesian Optimization

	Discussion

	Scaling Exact Gaussian Processes to Millions of Data Points
	Introduction
	Adapting BBMM and LOVE to Large-Scale Exact GPs
	Reducing Memory Requiremnts to O(N)
	Practical Considerations

	Results
	Ablation Studies
	Discussion

	Conclusion and Future Directions
	Beyond Matrix-Vector Multiplication
	Beyond Gaussian Processes

	Convergence Analysis of Preconditioned mBCG
	Proof of Theorems in Section 3.3.2
	Proof of Lemma 3.1
	Proof of Theorem 3.1
	Proof of Theorem 3.2

	Applying Theorems 3.1 and 3.2 to Univariate RBF Kernels

	Details on msMINRES-Contour Integral Quadrature
	Selecting Quadrature Locations and Weights
	A Specific Quadrature Formula for f(K) = K-1/2
	Estimating the Minimum and Maximum Eigenvalues
	The Complete Quadrature Algorithm

	Proof of Theorem 5.1

	Details on Natural Gradient Descent with CIQ-Based SVGP
	The Expected Log Likelihood and its Gradient
	The KL Divergence and its Gradient

	Full GPyTorch Code Examples
	Standard GP Regression
	Multitask GP Regression

	Bibliography

