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ABSTRACT

Current generation general circulationmodels (GCMs) simulate synoptic-scale climate state variables such

as geopotential heights, specific humidity, and integrated vapor transport (IVT)more reliably than mesoscale

precipitation. Statistical downscaling methods that condition precipitation on GCM-based, synoptic-scale

climate features have shown promise in the reproduction of local precipitation. However, current approaches

to climate-state-informed downscaling impose some limitations on the skill of precipitation reproduction,

including hard clustering of climate modes into a discrete set of states, utilization of numerical clustering

methodologies poorly suited to nonnormal data, and a tendency to focus on relationships to a limited set of

large-scale climate modes. This study presents a methodology based on emerging machine learning tech-

niques to develop global approximators of regional precipitation and discharge extremes given a suite of

synoptic-scale climate state variables. Archetypal analysis is first used to define regional modes of winter and

summer extreme precipitation and discharge across the eastern contiguous United States. A 2D convolution

neural network (NN) is then used to predict the co-occurrence of the archetypes using 300- and 700-hPa

geopotential heights, 300- and 700-hPa specific humidity, and IVT. Results suggest that 300-hPa geopotential

height, 700-hPa specific humidity, and IVT yield the most reliable predictions, although with some important

differences by season and region. Finally, we demonstrate that the trained activations of NN convolutional

layers can be used to infer the causal pathways between synoptic-scale climate features and regional extremes.

1. Introduction

Extreme precipitation and associated hydrological

extremes havemajor social and economic impacts across

the United States and globally. A review of U.S. insur-

ance claims exceeding one billion dollars from 1980 to

2011 shows that the most severe economic losses are

dominated by large-scale storm events that induce riv-

erine flooding (NCDC 2018). It is generally accepted
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that global climate change will result in thermodynamic

intensification of the hydrologic cycle, which will in-

crease the frequency and magnitude of precipitation

extremes (Trenberth 2011). Somewhat more uncertain

though is the impact that climate change will have

on extremes related to shifting atmospheric dynamics,

that is, how the atmospheric circulation and storm

tracks will change under warming and the implications

for the frequency of extreme storms in different regions

(e.g., Shaw et al. 2016).

Precipitation in the Northern Hemisphere midlati-

tudes is strongly influenced by large-scale atmospheric

circulation (Woollings et al. 2010; Farnham et al. 2017;

Nakamura and Huang 2018; Conticello et al. 2018).

During North American winters, for example, shifts in

the polar jet stream on daily to weekly time scales steer

Pacific (Farnham et al. 2017) and Atlantic (Nakamura

and Huang 2018) storm tracks, significantly altering

surface precipitation and hydroclimatic risk across the

United States (Lukens et al. 2018). Agel et al. (2018)

and Roller et al. (2016) demonstrate robust correla-

tions between regional jet stream features and seasonal

precipitation extremes across the northeastern United

States, while similar teleconnections have been dem-

onstrated for daily tropical moisture export (TME)-

derived rainfall across the eastern United States

(Steinschneider and Lall 2015) and Europe (Conticello

et al. 2018).

General circulation models (GCMs) and later gener-

ation Earth systemmodels (ESMs) are valuable tools for

projecting global changes in atmospheric dynamics that

control extreme precipitation under future greenhouse

gas emissions scenarios. However, the fidelity of local-

scale weather in GCMs is heterogeneous across sea-

sons (e.g., Knighton et al. 2017a), space (e.g., Wójcik
2015; Bock et al. 2018), and climate variables (e.g.,

surface temperatures, geopotential heights, precipi-

tation; Strobach and Bel 2017) owing to differences in

the complexity of the physics driving each process,

data availability, and numerical limitations imposed

by the horizontal spatial grid. These errors are often

particularly large for precipitation (Stephens et al.

2010), which, in addition to low GCM resolution,

complicates the direct use of climate model projec-

tions for hydrologic impact studies (Xu 1999). Re-

cently, these challenges have led some to argue that

more robust projections of shifting extreme events can

be achieved by characterizing the linkages between

large-scale, dynamical features of atmospheric circu-

lation and regional hydroclimate extremes directly

(Merz et al. 2014). These statistical downscaling ap-

proaches offer flexibility in how information is extracted

fromGCMs, leveraging the fact that synoptic-scale state

variables are often more reliably simulated by GCMs

than local-scale weather (e.g., Murawski et al. 2016,

2018; Farnham et al. 2018). Importantly though, these

methods rely on careful consideration of the most

significant relationships between synoptic-scale climate

features and precipitation extremes, and are best suited

for regional extreme events rather than localized events

such as those driven by spatially confined areas of strong

convection.

Studies linking extreme precipitation to features of

atmospheric circulation have often focused on re-

lationships to popular and well understood climate

oscillations (e.g., El Niño–Southern Oscillation, North

Atlantic Oscillation, Pacific decadal oscillation; e.g.,

Steinschneider and Lall 2016; Lee et al. 2018), which are

usually defined by the first few EOFs of large-scale ge-

opotential height or SST fields. While a focus on major

modes of climate variability can be useful in simplify-

ing the analysis, they may not be linked to extreme

events in a particular region, limiting the utility of this

approach. Precipitation extremes are likely a complex

function of atmospheric conditions across multiple

scales (Agel et al. 2019; Conticello et al. 2018; Farnham

et al. 2018), and so new insights and predictive skill may

be possible by relaxing the reliance on a priori beliefs

about which physical teleconnections are most mean-

ingful. Accordingly, many recent studies have begun to

examine a larger suite of synoptic-scale ‘‘climate states’’

identified for smaller regions. They have also explored

the use of alternative clustering algorithms to identify

these states, including archetypal analysis (AA; e.g.,

Steinschneider and Lall 2015; Hannachi and Trendafilov

2017), K-means clustering (e.g., Roller et al. 2016),

simulated annealing and diversified randomization

(SANDRA) classification (e.g., Murawski et al. 2016),

and self-organizing maps (e.g., Conticello et al. 2018;

Agel et al. 2018). Similar clustering is also often con-

ducted on local precipitation or wind speeds to identify

weather types, and connections between climate states

and weather types are then evaluated based on co-

incident frequency of the previously identified clusters

or through the development of conditional pdfs of pre-

cipitation extremes. For instance, Roller et al. (2016)

used K-means clustering to cluster 850-hPa wind fields

across the northeast United States into five climate

states. They demonstrate that extreme winter pre-

cipitation in the Northeast is most frequently associated

with synoptic-scale states indicative of strong extra-

tropical cyclones. Agel et al. (2019) furthered this work

and incorporated both synoptic-scale and subregional-

scale states to characterize localized climate features

in the northeast United States. Conticello et al. (2018)

similarly clustered near-surface geopotential heights
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and integrated vapor transport (IVT) through self-

organizing maps to derive conditional pdfs of precip-

itation extremes across a collection of rain gauges

in Italy.

While these approaches have advanced the identifi-

cation of linkages between large-scale climate patterns

and regional extremes, some limitations remain. First,

clustering algorithms, while useful to reduce the dimen-

sion of the problem, may conceal important linkages

between synoptic-scale climate fields and regional ex-

tremes. This is particularly true if clustering is conducted

on both large-scale climate and extreme precipitation,

since the identified clusters may highlight independent

modes of variability in each field at the expense of joint

patterns of variation.

In addition, the clustering techniques used may ob-

scure important features of climate states and extreme

precipitation. For instance, it is common to impose

subjective spatial constraints on the domain under

examination, and some of the methodologies (e.g.,

EOFs,K-means clustering) are limited in their ability to

represent patterns in nonnormal and skewed data, both

of which can lead to spurious patterns in the identified

clusters. Further, many of the methods discussed above

also tend to assume that each day in a historical record

can be meaningfully assigned to one weather type or

climate state from a discrete set of patterns. While this

approach provides an unambiguous classification, hard

clustering possibly obfuscates useful information on the

distance of each record from its prototypical mean, and

possibly ignores simultaneous physical expression of

multiple climate patterns.

The present study is motivated by the need to better

define the limits of predictability of regional hydro-

climate extremes using synoptic-scale climate features,

while minimizing the methodological limitations de-

scribed above. We aim to understand the degree to

which large-scale circulation features that are credibly

simulated by GCMs can be used to understand changes

in regional extreme event risk due to shifts in atmo-

spheric dynamics under climate change. The results of

this work can help set expectations regarding the limits

of inference on future extremes through a focus on

large-scale circulation dynamics, as has been recently

suggested (Merz et al. 2014).

We employ a methodology centered on emergent

machine learning techniques, a broad family of algo-

rithms that can relax the need to overly constrain the

problem statement a priori. The approach consists of

two primary steps: 1) the use of AA to characterize

dominant modes of extreme regional precipitation and

discharge by season, and 2) the use of a 2D convolutional

neural network (NN) to predict seasonal archetypes

using gridded, synoptic-scale climate information. These

methodological advances are forwarded as a way to

address the following questions:

d How well can regional hydroclimatic extremes be

characterized using only features of large-scale

circulation?
d Which features of large-scale circulation are most

relevant for predicting regional extreme events?
d How does this vary by season and region?

We evaluate these questions through a case study of

observed precipitation and simulated discharge ex-

tremes across the eastern contiguous United States

(CONUS). This region is selected for the wide avail-

ability of hydrometeorological observations, the pro-

pensity for extreme precipitation and riverine flooding

hazards (e.g., Lukens et al. 2018; Buchanan et al. 2018),

and strong influence of synoptic-scale circulation on

regional extreme events (e.g., Nakamura et al. 2013;

Steinschneider and Lall 2015, 2016; Farnham et al. 2017,

2018; Roller et al. 2016; Agel et al. 2018). The remainder

of this paper proceeds as follows. Section 2 describes the

use of AA and an NN to determine the potential pre-

dictability of regional extremes based on synoptic-scale

climate information. Details of our application to the

eastern CONUS, including the data, land surface model,

and evaluation methodology, are described in section 3.

Results are presented in section 4, and the paper con-

cludes with a discussion of broader impacts and poten-

tial future research needs that follow from this work.

2. Methodology

a. Archetypal analysis to identify space–time
organization of regional hydroclimate extremes

The AA technique, first applied in the context of

facial pattern recognition, is a method that defines

modes of variability in multivariate databased on

extremal points in the dataset (Cutler and Breiman

1994). When applied to hydrometeorological data, AA

uncovers ‘‘archetypal patterns’’ or ‘‘idealized examples’’

of space–time organization in regional precipitation. As

demonstrated in Steinschneider and Lall (2015), AA is

designed to objectively define coherent patterns of re-

gional extreme events in an underlying data field. These

patterns are based on observations along the convex hull

(i.e., outer edge) of the multivariate dataset. Each ar-

chetype represents a spatial pattern in the data, similar

to loading patterns in EOF analysis. Individual obser-

vations of the data at each time step are then repre-

sented as convex combinations of the archetypes (i.e.,

linear combinations with nonnegative weights that sum
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to unity), similar to how principal components are a

linear combination of EOFs and the original data. In this

way, AA is analogous to EOF analysis, but presents an

alternate and novel approach for identifying the spa-

tiotemporal structure that avoids the limitations of EOF

analysis when applied to extremes (Steinschneider and

Lall 2015; Hannachi and Trendafilov 2017).

Consider an n3 kmatrix X with n observations across

k locations, with xTi 5 [xi,1, . . . , xi,k] a singlemultivariate

observation. AA defines p characteristic archetypes,

or spatial patterns, across the k locations, with each of

the j 5 1, . . . , p archetypes represented by a different

weighting vector wT
j 5 [w1,j, . . . , wk,j]. By construction,

each archetype is defined as a convex combination

(i.e., a mixture) of the original observations:

w
j
5 �

n

i51

b
i,j
x
i
,

where

�
n

i51

b
i,j
5 1 and b

i,j
$ 0.

The archetypes can be organized into a p3 k matrix W,

with the convex weights grouped into an n3 pmatrix B,

such that W5BTX. Cutler and Breiman (1994) showed

that the archetypes W lie on the convex hull of X, sug-

gesting that the resulting archetypes will represent hy-

drometeorological extremes in different regions of the

domain (as well as a null archetype, associated with zero

values across the domain). The observations at each

time step can then be reconstructed as a separate convex

combination of the archetypes:

x̂
i
5 �

p

j51

T
i,j
w

j
,

where

�
p

j51

T
i,j
5 1 and T

i,j
$ 0.

The n 3 p matrix T contains the convex weights such

that X̂5TW. Matrix T describes the temporal expres-

sion of the archetypes, where T�,j is a vector of values

between 0 and 1 that can be interpreted as a time series

of the relative expression of the jth archetype across

time i 5 1, . . . , n. Extreme precipitation events are de-

fined as days on which the value of Ti,j approaches 1 for

any archetype j, on any day i, associated with a spatial

loading of precipitation. For a given p, archetypes are

identified through numerical approaches that iteratively

perturb thematricesT andB to search for theminimization

of the sum of square residuals (RSS), X2TBTX (see

Steinschneider and Lall 2015).

To determine a suitable number of archetypes p to

analyze, the optimal value of RSS is calculated for

different values of p. The number of archetypes is then

selected by determining when declines in RSS de-

celerate as additional archetypes are added (i.e., similar

to a scree test for EOF analysis). Appropriate selection

of p guarantees that large expressions of T are repre-

sentative of precipitation extremes.

b. 2D convolutional neural networks to identify
teleconnections

We seek to determine the potential predictability of

regional extreme events, as represented by the arche-

types above, given varied climate state variables that are

reliably simulated by GCMs. We use a NN instead of

other approaches (e.g., multivariate regression) because

NNs are well suited for the identification of meaning-

ful relationships in high-dimensional space and require

few a priori assumptions about the structure of the un-

derlying data and relationships between the inputs and

outputs. Neural networks can approximate any function

to an arbitrary degree of precision (Goodfellow et al.

2016), and are therefore able to model complex re-

lationships between input and output variables that

might not be captured by simpler models. As more data

become available for training, NNs will approach the

Bayes optimal classifier (Duin and Tax 2005), even if this

comes at the expense of interpretability of the under-

lying relationships (Montavon et al. 2018). Of course a

true upper limit on predictability using NNs cannot be

guaranteed, as this method (like all others) still has

underlying assumptions in its architecture that may

limit prediction. However, NNs are sufficiently flexi-

ble in design that they provide a better approxima-

tion of the potential predictability of extremes using

high-dimensional synoptic-scale climate informa-

tion, as compared to simpler methods (Rawat and

Wang 2017).

We develop a deeply connected 2D convolutional NN

(Table 1, Fig. 1) within Keras (Chollet 2015), similar to

that described in Krizhevsky et al. (2012). This network

architecture utilizes the spatial structure of a 2D image

input layer [i.e., a horizontal (x 3 y) grid of synoptic-

scale climate at time i; layer 1 in Table 1] to produce an

output of p classifications (i.e., simultaneous expression

of each archetype Ti,� at time i; layer 10 in Table 1). A

series of hidden (i.e., intermediate) layers connect the

horizontal grid to the output of p classifications. These

layers are composed of a series of neurons h, where each

neuron is defined by a function of connected input

neurons from the previous layer, and a corresponding
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series of weights u. Each layer type performs a similar

operation, but differs in the number of input neurons

connected, and how those input neurons are used to

predict values of neurons in the next layer. Convolu-

tional 2D and max pooling layers retain important

information on the spatial patterns of inputs, using a

sliding window to pool information across a matrix of

input neurons that captures spatial information in the

horizontal grid of synoptic-scale climate information.

A convolutional 2D layer calculates the dot product

of connected input neurons across all layer weights,

while max pooling layers retain only the maximum

value neuron within each pool. Flatten layers do not

modify the neuron values, but reshape the neurons

from a spatial grid to a vector, while dense layers

connect each input neuron in that vector to each

output neuron in the next layer. In dense layers,

dropout is used to randomly remove a proportion of

neuron connections for network training in an attempt

to limit network overfitting. In addition, L2 regulari-

zation with a weight of 0.01 was applied to each con-

volutional and densely connected layer. Rectified

linear unit (ReLU) activation is employed so that

negative neuron values are set to 0. Finally, Softmax

activation on the output of the densely connected

layer forces the algorithm to assign probabilities be-

tween (0, 1) to each output node, which respects

archetype structure (i.e., �p

j51Tji 5 1 for each obser-

vation i). By simultaneously predicting the p arche-

type values for each day, the NN can help explore the

feasibility of predicting more complex combinations

of the archetypal patterns, rather than a hard binning

of each historical day into one prototypical pattern.

This is akin to a fuzzy classification problem (Huth

et al. 2008). The network is evaluated with the Adam

optimizer using mean square error (MSE) as the

TABLE 1. Deep convolutional neural network architecture for prediction of archetype expression given a daily climate input field.

Intermediate layer dimensions presented are established for the data used in this study (inputs x 5 78, y 5 22, and output p 5 5). The

column ‘‘n parameters’’ indicates the number of calibrated parameters within each layer.

Layer Description Dimensions of features/outputs n parameters Activation

1 Input x 3 y 3 1 — —

2 Convolutional 2D (4 3 4 kernel, stride 1) 77 3 21 3 1 15 ReLU

3 Max pooling (2 3 2 pool size) 35 3 10 3 1 0 None

4 Batch normalization 35 3 10 3 1 12 None

5 Convolutional 2D (4 3 4 kernel, stride 1) 32 3 7 3 3 147 ReLU

6 Max pooling (2 3 2 pool size) 16 3 3 3 3 0 None

7 Batch normalization 16 3 3 3 3 12 None

8 Flatten 144 3 1 0 None

9 Dense (40% dropout) 64 3 1 20 880 ReLU

10 Dense p 3 1 580 Softmax

FIG. 1. Schematic of computational workflow in a deeply connected convolutional NN showing a convolutional 2D layer, a max pooling

layer, a flatten layer, and a densely connected layer. The sliding window in the convolutional 2D layer maps subgrids of a3 b cells in the

original x3 y grid of synoptic climate information to a neuron in the next layer, while maintaining the gridded structure of information.

Similarly, the sliding window in the max pooling layer maps subgrids of c3 d neurons to a neuron in the next layer, which also maintains

the gridded structure. Eventually, the grid of neurons is flattened into an e-vector, which is used to predict archetype expressions through

a Softmax activation.

MAY 2019 KN IGHTON ET AL . 887

Unauthenticated | Downloaded 03/08/21 01:02 PM UTC



objective function, and is trained with a batch size of

40 samples, across 40 epochs.

3. Application to the eastern CONUS

NN predictions are evaluated for daily precipitation

and discharge archetypes across the eastern CONUS

(east of 908W) for cold and warm seasons and different

synoptic-scale climate fields. More detail on the de-

velopment and evaluation of the precipitation and

discharge archetypes, their prediction using 2D con-

volutional NNs, and the interpretability of the NN

output is provided below.

a. Discharge and precipitation archetypes

Cold season (October–March) and warm season

(April–September) precipitation archetypes are de-

veloped from CPC Unified Gauge Network daily

gridded precipitation collected between 1948 and 2017

at a 0.258 horizontal resolution (NOAA 2018). This

precipitation product is derived from an interpolation

of a dense network of weather stations (Xie et al. 2007;

Chen et al. 2008) and therefore avoids some of the

problematic issues with GCM- and reanalysis-derived

precipitation (e.g., Wuebbles et al. 2014; Janssen et al.

2016; Knighton et al. 2017a). For each season, we de-

velop p5 1, . . . , 20 archetypes and select the number of

archetypes p based on inflection points in a scree plot.

Cold season (November–April) and warm season

(May–October) stream discharge archetypes are de-

veloped from simulated daily discharge at a 0.258
resolution using a land surfacemodel (LSM) to translate

available daily meteorological data into daily stream-

flow. The seasonal ranges are shifted forward by one

month compared to the precipitation archetypes to

avoid the influence of spring snowmelt on warm season

discharge archetypes. Simulated discharge is developed

using a semiphysically based lumped LSM (Archibald

et al. 2014) developed for the United States east of 908W
that computes surface runoff via the curve number ap-

proach modified to simulate variable source area (VSA)

hydrology (Schneiderman et al. 2007; Easton et al.

2008). Themodel simulates snow accumulation andmelt

with the physically based energy budget model of

Walter et al. (2005). For conciseness, additional details

on the LSM model, including additional data inputs,

fitting procedures, and validation, are presented in

supplementary material (Fig. S1 in the online supple-

mental material). Scree tests are also used to select

the number of discharge archetypes for each season.

To ensure that the identified archetypes correlate with

extreme events, we compare the time expression T�,j of
each archetype to catalogs of historical weather and

socioeconomic loss data. For cold season precipitation

archetypes, we utilize the U.S. National Centers for

Environmental Information (NCEI) Storm Events Da-

tabase between 1982 and 2017 (NCEI 2018). This record

is filtered to include only weather events east of 908W
and from the following reported precipitation mecha-

nisms: blizzard, flash flood, flood, heavy rain, heavy

snow, hurricane, lake effect snow, tropical storm, trop-

ical depression, thunderstorm, winter storm, and winter

weather. We cluster each record in T�,j into days with

and without an extreme weather event as determined

by the Storm Events Database, and compare the con-

ditional cumulative distribution function (cdf) of T�,j
across these two groups. The degree of separation be-

tween the cdfs highlights the association between in-

creases in a given archetype and observed extremes.

The analysis is repeated for daily discharge archetypes

using the NCDC record of weather extremes resulting

in billion dollar losses (NCDC 2018). This loss record is

filtered to only include losses associated with riverine

flooding resulting from atmospheric mechanisms.

b. Predictions of archetypes via 2D convolutional NN

Of the four sets of archetypes above, we use three

in a NN prediction model: cold season precipitation,

warm season precipitation, and warm season discharge.

We do not attempt to predict cold season discharge with

synoptic-scale fields because snow accumulation andmelt

processes are not captured in the climate data alone.

Five climate fields are considered as predictors for the

precipitation and discharge archetypes: daily 300- and

700-hPa geopotential heights, 300- and 700-hPa specific

humidity, and IVT. All data above are taken from the

NCEP–NCAR Reanalysis 1 project (Compo et al. 2011)

over the region 12.58–658N, 227.58–358Wand are available

at a 2.58 3 2.58 resolution between 1948 and 2017. IVT

is calculated as in Zhu and Newell (1998) by integrating

the product of specific humidity q and both zonal u and

meridional y wind speeds between 1000 and 300hPa:

IVT5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ð300
1000

uq

g
dp

�2

1

�ð300
1000

yq

g
dp

�2
s

,

where g is the standard acceleration of gravity

(9.8m s22). We use Reanalysis I for all fields above to

support the inclusion of more extreme events in the anal-

ysis, prior to the start of more resolved reanalysis products

in 1979. In addition, the selection of the rather coarse

(2.58) reanalysis dataset was intentionally chosen to align

with the average horizontal resolution of GCMs used in

the CMIP5 ensemble of long-term climate projections

(Taylor et al. 2012). We note that higher-resolution input

datasets could yield stronger identification of atmospheric
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teleconnections, although this would increase the ratio of

grid cells to observations and could lead to overfitting.

Prediction skill is evaluated for one input climate

variable at a time to understand the relative importance

of each for different precipitation and discharge arche-

types. Accordingly, the NN inputs are a batch of two-

dimensional 78 3 22 3 1 inputs for each day of the

record, that is, one 2.58 synoptic-scale climate state

variable (x 3 y in Table 1). All input climate state var-

iables are locally centered and scaled prior to use in the

NN. The NN to predict all archetypes is trained only for

days when the null archetype (i.e., the archetype asso-

ciated with zero precipitation or discharge) is expressed

less than 0.5. This approach emphasizes extreme and

heavy (high) precipitation (discharge) events when

training the NN. The resulting datasets are 2062, 2734,

and 1071days for cold season precipitation, warm sea-

son precipitation, and warm season discharge, respec-

tively.Due to the limited samples available, we do not use

distinct training, validation, and testing datasets. Instead,

we utilize an approach described in Goodfellow et al.

(2016) in which the model is fit to 80% of the avail-

able data and validated against the remaining 20%. This

analysis is repeated for five iterations, each time selecting

a new 20% of the samples as validation. This approach

allows all samples to be used in validation to more

accurately assess model prediction skill, although

some overfitting to the validation dataset, and deflation of

MSE scores, is still possible (Russell and Norvig 2016).

Finally, the results of the NN prediction for one of the

winter precipitation archetypes is interpreted through an

evaluation of the activations associated with the first 2D

convolutional layer trained on the IVT data, similar to

methodologies described byZeiler and Fergus (2014) and

Yosinski et al. (2015). The relative simplicity of the NN

applied in this problem allows for some interpretation of

the first layer activations. By reviewing the activations we

hope to understand what climate information is pre-

served and passed on to subsequent layers, and is there-

fore predictive of teleconnections. This enables some

inference on physical mechanisms linking the climate

fields to the archetypes, although it is important to rec-

ognize that additional layers within the network obscure

the final linkages made by the model. Interpretation of

NN activations for a second winter precipitation

archetype and 300-hPa geopotential height inputs are

provided in the supplementary material.

4. Results

a. Archetypes of daily precipitation and
stream discharge

1) DAILY PRECIPITATION

Scree tests suggest that p5 5 archetypes are sufficient

to describe a substantial proportion of variability within

the dataset, and additional explained variance increases

only marginally with more archetypes. Figure 2 shows

FIG. 2. Winter and summer archetypes of daily precipitation across the eastern United States.
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the five archetypes for cold and warm season pre-

cipitation across the eastern CONUS. The null arche-

type (first column, Fig. 2) represents the case of no

precipitation over the domain and is the most common.

The remaining archetypes represent spatially coherent

modes of precipitation across the eastern United States

and are very consistent across the two seasons. Most

nonnull archetypes are elliptical with a characteristic

elongation from southwest to northeast, which is con-

sistent with the westward and poleward direction of

storm tracks over the CONUS and associated moisture

flux in the warm conveyer belt of extratropical cyclones.

This is particularly the case in the cold season for

all regions (Great Plains, P-W2; Northeast, P-W3;

Southeast, P-W4; and Gulf region, P-W5). In contrast,

some archetypes for warm season precipitation arche-

types are less elliptical (Great Plains, P-S2), suggesting

a different delivery mechanism. The warm season ar-

chetypes are generally consistent with the June–August

archetypes identified by Steinschneider and Lall (2015),

with precipitation over theGreat Plains region (P-S2) and

the Southeast (P-S4) being the most common, and less

frequent, intense precipitation identified in the Northeast

(P-S3). In contrast to our conclusion, Agel et al. (2015)

suggest that daily extreme summertime precipitation

over the Northeast is not spatially cohesive, although

Agel et al. (2015) considered a relatively low density of

point measurements of precipitation and defined the

Northeast to be bounded below by New York. Our

archetypal analysis of daily precipitation suggests that

extreme weather events affecting the Northeast (Fig. 2,

P-W3 and P-S3) may commonly center on NewYork and

extend south to 358N. Further, the small number of ar-

chetypes selected here likely ignores spatially heteroge-

neous extremes linked to localized convection, and rather

focuses on larger-scale mechanisms of moisture delivery

to the region.

2) DAILY DISCHARGE

Similar to precipitation, p 5 5 archetypes were se-

lected based on scree tests for the discharge archetypes

on both seasons. In part, the similarity in the number of

selected archetypes is driven by the link between the two

processes, that is, large-scale heavy precipitation drives

regional floods. However, the number of archetypes to

select was less clear from the scree tests for discharge

compared to precipitation. We select five discharge ar-

chetypes for each season as a reasonable choice based on

the scree test and for consistency with the precipitation

archetypes. Figure 3 shows these cold and warm season

discharge archetypes.

As with precipitation, the first archetype of each

season represents the null case of little significant

streamflow (i.e., base flow conditions) across the east-

ern United States. In the cold season, some discharge

archetypes spatially align with the precipitation arche-

types, for instance (D-W3, P-W5) and (D-W4 and P-W2).

Other winter discharge archetypes (D-W2 and D-W5)

FIG. 3. Winter and summer archetypes of daily discharge across the eastern United States.
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deviate from winter precipitation archetypes, partic-

ularly in the northern latitudes where they exhibit

stark latitudinal gradients linked to snowpack accu-

mulation and melt. The spatial coherence of discharge

archetypes is larger during the cold season, particu-

larly for archetypes D-W3 and D-W4. During this

season the land surface is generally saturated with

reduced evapotranspiration and latent heat losses.

As a result, precipitation as rainfall is more directly

translated into stream discharge. Warm season dis-

charge archetypes are more spatially constrained than

cold season discharge archetypes, as well as warm season

precipitation archetypes (Fig. 2). This result is mostly

likely due to canopy interception and land surface in-

filtration (Knighton et al. 2017b), allowing only pre-

cipitation inputs in excess of the initial abstraction to

contribute to streamflow, as surface runoff or ground-

water respectively. Summer discharge archetypes

(at least the five assessed here) are more indicative of

Gulf and Atlantic Coast landfalling weather sys-

tems with high discharge directly along the coasts.

If seven discharge archetypes are utilized, the algo-

rithm highlights a Great Plains discharge archetype

(see Fig. S2).

3) COMPARISON TO WEATHER EVENT CATALOGS

The daily precipitation archetype time series T are

grouped into two datasets: days on which at least one

precipitation event was reported in the NCEI Storm

Events Database, and days with no reported weather

events. Figure 4 shows the conditional cdfs of the time

series expressions across all precipitation archetypes

(i.e., columns of T). Days with no NCEI reported

storm events have a higher probability that the null

archetype is expressed (Fig. 4, column 1). Conversely,

the nonnull winter and summer precipitation arche-

types become more likely during days with reported

weather events.

The separation between cdfs is generally greater

across all cold season archetypes than warm season

archetypes. This result is possibly attributable to cold

season precipitation extremes predominantly occur-

ring as regional events which are more likely to be

captured by AA, versus more localized mechanisms

that dominate summer extremes. This comparison

generally supports the precipitation archetypes as a

meaningful clustering of weather events. Despite this

result, it is worth mentioning that the NCEI Storm

Events Database is likely an incomplete record of

historical events, since the magnitude of variations in

annual storm frequency tends to correlate with state

population density, suggesting issues with how events

are observed and reported. A similar comparison of

discharge archetypes to a catalog of billion dollar loss

estimates is further discussed in the supplementary

material (Fig. S3).

FIG. 4. CDFs of precipitation archetype expressions on days with no reported NCEI storm event (blue) and a reported

storm event (red).
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b. Convolutional neural network

1) NN PREDICTIONS OF PRECIPITATION

ARCHETYPES

The NN was trained on each synoptic climate field

separately to predict the expression of all five warm and

cold season precipitation archetypes on each day. The

pdf of each target archetype is highly nonnormal, with a

positive skew. The mode of each archetype is 0, yield-

ing anNNpreference to set predicted archetypes to low

values to minimize MSE, presenting an inherent chal-

lenge for network training. However, despite these

challenges, the resulting network demonstrates skill in

the reproduction across all archetypes for both warm

and cold season precipitation (Figs. 5, 6). We only show

predictions for nonnull archetypes to focus the dis-

cussion on the ability of the NN to predict extreme

precipitation events.

In the cold season, Fig. 5 shows that both upper-

(300 hPa) and lower-level (700 hPa) geopotential

height provide similar information on extreme pre-

cipitation with respect to MSE, but upper-level pres-

sures show a less biased prediction. This result is not

surprising, as perturbations to the jet stream tend to

guide winter storm tracks (Nakamura and Huang

2018). For several cold season archetypes, the specific

humidity field at the 700-hPa level outperforms the

300-hPa specific humidity field, which is expected as

specific humidity at 700 hPa is more representative

of the mass of available atmospheric moisture for

precipitation. IVT represents the most consistent

predictor of cold season precipitation archetypes,

outperforming the other predictors when considering

all archetypes.

In the warm season, the relative predictability

afforded by lower- (700 hPa) and upper-level (300 hPa)

geopotential heights is reversed as compared to the

cold season. This reflects the fact that jet stream dy-

namics are less dominant over North America in the

warm season, and low level circulation patterns (e.g.,

the North Atlantic subtropical high) play a larger role

in controlling moisture transport over the continent

(Steinschneider and Lall 2015). Similar to the cold

season though, low-level specific humidity and partic-

ularly IVT provide strong predictors of warm season

archetypes. Overall, our results are consistent with

the conclusions of Conticello et al. (2018) that IVT can

serve as a strong, synoptic-scale predictor of precipi-

tation extremes, and suggest this is possible in both

seasons. Our results are also consistent with the con-

clusion of Murawski et al. (2016) that near-surface

atmospheric humidity provides a better predictor of

local precipitation than lower-level pressure states.

Importantly, the predictive performance of the

NN is not uniform across archetypes. Better out-of-

sample predictions are observed for certain arche-

types, such as P-W3, P-S2, and P-S3 and, to a lesser

extent, P-W2, given 300-hPa geopotential heights,

700-hPa specific humidity, and IVT. For the remaining

archetypes, minimization ofMSE occurs at the expense

of increased prediction bias, particularly for T . 0.5,

which serves as a threshold for storm identification (see

Fig. 4). The NN struggles to predict extremes of the

remaining archetypes, possibly for two reasons. First,

winter archetypes P-W4 and P-W5 do not lie on the

predominant Pacific or Atlantic Northern Hemi-

sphere winter storm tracks (Lukens et al. 2018), and

therefore these modes of precipitation are possibly

not as influenced by regional atmospheric flow as are

P-W2 and P-W3. Similarly, summer precipitation is

generally less influenced by regional atmospheric

circulation than occurs in winter. These differences

highlight the fact that synoptic-scale information has

different utility for characterizing the occurrence of

extreme events depending on the season and region.

Second, even in the 70-yr record used here, there are

only a limited number of extreme events for each

region, and the available data is less than the many

thousands of samples that NNs typically require

for model training. It is possible that a larger data-

set could uncover stronger relationships between

archetypes P-W4, P-W5, P-S4, and PW-5 and the

synoptic-scale climate products.

2) NN PREDICTIONS OF SUMMER DISCHARGE

ARCHETYPES

Figure 7 shows NN predictions of nonnull warm

season discharge archetypes. Overall, no synoptic-scale

field provided strong predictions of land surface dis-

charge patterns across any of the archetypes under

cross validation. These results could suggest that the

processes involved in large runoff events are too com-

plex to be predicted with synoptic-scale climate in-

formation alone, and additional information (e.g.,

antecedent conditions) needs to be considered to un-

derstand how dynamical climate change could impact

discharge extremes. Alternatively, the issue could be

one of data limitations. In contrast with winter and

summer precipitation, the discharge dataset was lim-

ited to 1062 records (when the null archetype was,0.5)

as a result of drier summer soils allowing for larger

infiltration rates, tempering runoff extremes (Ivancic

and Shaw 2015; Knighton et al. 2017b). In this way, the

land surface acts as a high-pass filter on precipitation,
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allowing only higher discharge events to contribute to

the expression of nonnull archetypes. While this fil-

tering effect could simplify the problem in that only

days of high archetype expression are provided for

NN training, it is possible that this case is too data

limited to properly evaluate teleconnections given

the overly parameterized nature of NNs. If we re-

move the null archetype from the prediction set (i.e.,

reduce the dimensionality of the problem), there is a

substantial improvement in NN prediction skill for

summer discharge archetypes (see Fig. S4). This oc-

curs even though the model formulation is biased,

since Softmax activation requires predictions to sum

to unity, which will not occur in the observed ar-

chetype expressions if the null archetype is removed.

This analysis demonstrates that direct downscaling

from synoptic-scale climate features to regional dis-

charge may be possible, but likely will rely on a

FIG. 5. Deep convolutional network prediction skill for the validation set of cold season precipitation archetypes. MSE scores are

presented for the validation set, where an asterisk (*) indicates the best performing climate state variable per archetype. The 1:1 line is

presented in gray. The scatterplot presents only validation points from the most recent 20% of samples.
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modified network architecture and a larger training

dataset.

3) INTERPRETATION OF CONVOLUTIONAL NNS:
ARCHETYPE P-W2

Here we review characteristic events and NN pre-

dictions for P-W2, and present a similar analysis for

P-W3 in the supplementary material (Fig. S5). Figure 8

shows four characteristic events where archetype P-W2

was very active (T . 0.95). All four events show similar

spatial patterns of intense precipitation across the Great

Plains andMidwest regions of the eastern United States.

The 8December 1978, 2March 1997, and 19March 2008

precipitation events (and subsequent flooding) occurred

via nearly identical atmospheric mechanisms. In each

case, rainfall was induced by a stationary front stalled

in the Northern Kentucky region, which steadily drew

moisture from the Gulf of Mexico poleward, resulting

FIG. 6. Deep convolutional network prediction skill for the validation set of warm season precipitation archetypes. MSE scores are

presented for the validation set, where an asterisk (*) indicates the best performing climate state variable per archetype. The 1:1 line is

presented in gray. The scatterplot presents only validation points from the most recent 20% of samples.
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in a line of intense thunderstorms that persisted for

greater than 24 h (NOAA 2008; Sullavan et al. 1979;

Jackson and Vivian 1997).

Across each event, the geopotential height field

exhibits a trough over the western United States or

eastern Pacific and a high pressure ridge along the

U.S. Atlantic coast extending from Florida to Maine,

consistent with the presence of meridional moisture flux

from the Gulf of Mexico. Strong and Liptak (2012)

performed EOF analysis of upper-level wind speeds to

uncover correlations with Midwest winter precipitation.

They determined that an extratropical cyclone structure

of the wind field that drew and propagated moisture

from the Gulf through the East Coast was correlated

with days of winter precipitation. They also showed that,

conversely, an equatorward movement of the jet stream

tended to suppress winter precipitation. Nakamura et al.

(2013) reached similar conclusions through a diagnostic

FIG. 7. Deep convolutional network prediction skill for the validation set of summer discharge archetypes.MSE scores are presented for

the validation set, where * indicates the best performing climate state variable per archetype. The 1:1 line is presented in gray. The

scatterplot presents only validation points from the most recent 20% of samples.
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review of 20 extreme flooding events within the Ohio

basin. They emphasized the importance of the station-

ary high pressure ridge along the eastern U.S. coast that

guides moisture poleward toward the Ohio basin, as

opposed to the seasonal mean westerly moisture trans-

port. These findings are in line with the observed IVT

for each event, showing a southwest–northeast flux of

moisture across the Great Plains region.

The first convolution layer activations from the NN

trained on IVT are evaluated to understand how the NN

screens out noninformative climate features. Similar

results for 300-hPa geopotential heights and P-W2

and P-W3 are presented in the supplemental material

(Figs. S6 and S7, respectively). Across all four events,

the first convolutional 2D layer activations on IVT show

strong spatial consistency across the Great Plains and

easternUnited States, mirroring the characteristic shape

of winter storm tracks (Lukens et al. 2018). The trained

layer assigns low values to most IVT fluxes that sub-

stantially deviate from the southwest to northeast

elongated shape of moisture fluxes common to P-W2

events. Notably though, the first convolutional layer

activations preserve moisture tracks over the Pacific

during 23 February 1975 and 2 March 1997 events that

have similar shapes to moisture fluxes resulting in Great

Plains precipitation events. This is because the NN ar-

chitecture used here seeks to identify characteristic

shapes in the input data that are related to the arche-

types. Network weighting of similar spatial patterns in

different locations of the input layer could result in false

archetype prediction, although the complexity of the

method makes it difficult to determine if this issue is

ameliorated in deeper layers in the network.

5. Discussion

a. General circulation model precipitation
downscaling

Kennel et al. (2016) suggest that we currently lack

appropriate demonstrations of how a physical un-

derstanding of climate dynamics can inform practices to

reduce systemic risk and aid decision making. In the

context of long-term planning, this gap is sustained in

part because of the difficulty in understanding the re-

lationships between the general circulation and re-

gional to local precipitation and hydrologic extremes,

and utilizing those relationships in the design of en-

gineered projects with long planning horizons. Statis-

tical downscaling techniques, which often attempt

to both bias-correct GCM estimates and to relate

grid-scale physically based processes (e.g., atmospheric

moisture transport) to parameterized subgrid processes

(e.g., local precipitation), carry issues of skill (e.g.,

Castellano and DeGaetano 2017) and climate trans-

ferability (e.g., Dixon et al. 2016). This uncertainty often

leads to low reliability in predictions of extreme pre-

cipitation (e.g., Stephens et al. 2010; Bock et al. 2018)

and land surface responses (Hirabayashi et al. 2013).

FIG. 8. Four characteristics events of P-W2: total daily rainfall, 300-hPa geopotential heights (black contours) and anomalies (color), IVT,

and trained first convolutional layer activations.
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However, GCMs provide relatively reliable estimates

of synoptic-scale climate variables (surface air temper-

atures, geopotential height fields, IVT; e.g., Johnson

and Sharma 2009; Perez et al. 2014) and the structure

of some synoptic-scale weather systems (Zappa et al.

2013), though potentially with some regional heteroge-

neity (e.g., Sachindra et al. 2013). Murawski et al. (2016,

2018) and Farnham et al. (2018) demonstrate the via-

bility of relating synoptic-scale climate patterns to local

weather as an alternative methodology for downscaling.

These approaches avoid some of the issues of climate

transferability (e.g., Dixon et al. 2016) in the explicit

consideration of future changes to the frequency of

synoptic-scale climate states. Our results support this

general approach, and suggest that 300-hPa geopotential

heights, 700-hPa specific humidity, and IVT all show

some utility for predicting extreme precipitation pat-

terns across the Eastern CONUS, at least in some re-

gions and seasons.

The use of emerging machine learning techniques

like archetypal analysis and a 2D convolutional NN

represents a novel approach for identifying spatiotem-

poral clusters and predictability of precipitation and

discharge extremes. This methodology offers the possi-

bility of several improvements over previous methods.

First, previousmethods have predominantly utilized hard

clustering of synoptic-scale weather types to uncover re-

lationships to regional precipitation (Steinschneider and

Lall 2015, 2016; Murawski et al. 2016; Roller et al. 2016;

Zhao et al. 2017; Agel et al. 2018; Conticello et al. 2018;

Farnham et al. 2017). We demonstrate that AA circum-

vents the need to classify each day as exclusively one

weather type. Previous studies have also focused on

teleconnections to well-understood modes of global

climate variability (e.g., ENSO, NAO, PDO; e.g., Lee

et al. 2018), but such approaches are perhaps too limit-

ing, as demonstrated byAgel et al. (2019) andConticello

et al. (2018). NNs can avoid the need to subjectively

define climate modes a priori, or overly constrain the

bounding window of climate information considered.

b. Limitations and opportunities for further research

Though our research approach is novel and introduces

new opportunities for downscaling GCM projections

to regional extremes, we adopted several assumptions

that require additional discussion.

First, we only use daily data, which is a common ap-

proach but neglects processes occurring over shorter

time scales relevant to the evolution of extreme events.

Flooding within theUnited States predominantly affects

smaller catchments (e.g., Marjerison et al. 2016) that are

sensitive to rainfall characteristics occurring at subdaily

scales (Knighton and Walter 2016). The atmospheric

patterns that we relate to regional precipitation and

streamflow in this work may have less effect on sub-

daily extremes, which are driven primarily by localized

weather events (Barbero et al. 2017). It is worth ex-

panding the scope of this analysis to consider 6-hourly

to hourly data to determine if climate-weather rela-

tionships can be found at time scales that are most

relevant to flooding hazards. This would also increase

the available data for model training.

In addition, the relationship between archetypes and

extreme events was verified on two storm event catalogs,

but these databases are potentially an incomplete record

of past events, and so a more robust approach for

benchmarking AA should be conducted. Further, in-

creasing the number of archetypes could more accu-

rately represent localized patterns of discharge and

precipitation extremes, and potentially more mean-

ingful climate teleconnections.

We applied a relatively simplistic hydrologic model

that partitioned rainfall into runoff and infiltration via

an imposed representation of VSA hydrology across

the eastern United States. While this is not a poor

assumption for this region (Buchanan et al. 2018), a

more physically based land surface model could po-

tentially improve the representation of high-intensity

precipitation-runoff events.

Finally, the strength of the relationships between

spatial patterns of precipitation and discharge across

the Eastern CONUS and daily large-scale climate

features was at times limited. This indicates that ex-

pectations should be tempered when relating extremes

to synoptic-scale fields, at least for some regions and

seasons. However, some of this error may be attribut-

able to limitations of reanalysis products in captur-

ing regional geopotential heights and near-surface

humidity that co-occur with precipitation extremes

(Sachindra et al. 2013). Biases in the hydrologic bud-

gets of NCEP–NCAR Reanalysis 1, particularly in the

southeast CONUS could lead to limitations in repro-

duction of precipitation archetypes (Mo and Higgins

1996; Trenberth and Guillemot 1998). More generally,

data availability and network architecture could also limit

the usefulness of the NN approach. Methods to extend

the historical record, like the use of longer but sparser

gauging networks, could be paired with longer reanalysis

datasets (NOAA–CIRESTwentiethCenturyReanalysis;

Compo et al. 2011) to develop more robust training da-

tasets. More complex network architectures should also

be explored that can better distinguish between shapes

in the synoptic-scale fields that are most relevant to ex-

tremes in a particular region of interest. Future research

could also expand the temporal window of NN inputs to

consider a combination of current day and past weather
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conditions in predicting precipitation, or multiple com-

binations of inputs (e.g., 300-hPa geopotential heights

and 700-hPa specific humidity). Both of these changes

would increase the dimensionality of the problem and

would possibly require alternate computational strate-

gies to avoid model overfitting.

6. Conclusions

This study contributes a novel approach to link the

occurrence of regional precipitation and discharge

extremes to synoptic-scale climate fields that has the

potential to improve downscaling of climate model

information. We developed seasonal archetypes for

daily precipitation and discharge across the eastern

United States, which were verified against catalogs of

historical storms and then predicted using a 2D con-

volutional neural network and five daily climate re-

analysis products (300-hPa geopotential height, 700-hPa

geopotential height, 300-hPa specific humidity, 700-hPa

specific humidity, and IVT). The first convolutional

layer activations of the NN were also examined to un-

derstand how NNs identify teleconnections between

synoptic-scale climate features and regional extreme

events. Results suggested that IVT (and, to a lesser

extent, 300- and 700-hPa geopotential height) yielded

the most reliable predictions of regional archetypes. In

particular, cold season precipitation across the Great

Plains and Midwest region were reliably predicted by

preserving information on moisture fluxes across the

eastern United States. These results support the use of

IVT as a key synoptic-scale variable that should be

considered in future downscaling applications. How-

ever, prediction skill varied significantly across arche-

types of precipitation and discharge for different seasons

and regions. Therefore, there may be a limit to the utility

of synoptic-scale information for downscaling applica-

tions targeted to extreme events, depending on the

hydrologic variable of interest and the predominant cir-

culation regimes for the region and time of year under

study. This study demonstrates that emergent machine

learning techniques like AA and 2D convolutional NNs

can help assess whether such a downscaling strategy is

viable for regional extremes, and the degree of pre-

dictability that can be expected given synoptic-scale

climate information.

Acknowledgments. This work was supported by

Cornell University and The Nature Conservancy. The

Nature Conservancy gratefully acknowledges the William

Penn Foundation’s generous support of the develop-

ment of this work (Grant 141-16). The opinions ex-

pressed in this report are those of the author(s) and do not

necessarily reflect the views of the William Penn

Foundation.

REFERENCES

Agel, L., M. Barlow, J. H. Qian, F. Colby, E. Douglas, and

T. Eichler, 2015: Climatology of daily precipitation and ex-

treme precipitation events in the northeast United States.

J. Hydrometeor., 16, 2537–2557, https://doi.org/10.1175/

JHM-D-14-0147.1.

——,——, S. B. Feldstein, andW. J. Gutowski, 2018: Identification

of large-scale meteorological patterns associated with

extreme precipitation in the US northeast. Climate Dyn., 50,

1819–1839, https://doi.org/10.1007/s00382-017-3724-8.

——, ——, F. Colby, H. Binder, J. L. Catto, A. Hoell, and

J. Cohen, 2019: Dynamical analysis of extreme precipita-

tion in the US northeast based on large-scale meteorologi-

cal patterns. Climate Dyn., 52, 1739–1760, https://doi.org/

10.1007/s00382-018-4223-2.

Archibald, J. A., B. P. Buchanan, D. R. Fuka, C. B. Georgakakos,

S. W. Lyon, and M. T. Walter, 2014: A simple, regionally pa-

rameterized model for predicting nonpoint source areas in

the northeastern US. J. Hydrol. Reg. Stud., 1, 74–91, https://

doi.org/10.1016/j.ejrh.2014.06.003.

Barbero, R., H. J. Fowler, G. Lenderink, and S. Blenkinsop, 2017:

Is the intensification of precipitation extremes with global

warming better detected at hourly than daily resolutions?

Geophys. Res. Lett., 44, 974–983, https://doi.org/10.1002/

2016GL071917.

Bock, A. R., L. E. Hay, G. J. McCabe, S. L. Markstrom, and R. D.

Atkinson, 2018: Do downscaled general circulation models

reliably simulate historical climatic conditions? Earth In-

teract., 22, https://doi.org/10.1175/EI-D-17-0018.1.

Buchanan, B., and Coauthors, 2018: Estimating dominant runoff

modes across the conterminous United States. Hydrol. Pro-

cesses, 32, 3881–3890, https://doi.org/10.1002/hyp.13296.

Castellano, C. M., and A. T. DeGaetano, 2017: Downscaling ex-

treme precipitation from CMIP5 simulations using historical

analogs. J. Appl. Meteor. Climatol., 56, 2421–2439, https://

doi.org/10.1175/JAMC-D-16-0250.1.

Chen, M., W. Shi, P. Xie, V. B. Silva, V. E. Kousky, R. W. Higgins,

and J. E. Janowiak, 2008: Assessing objective techniques for

gauge-based analyses of global daily precipitation. J. Geophys.

Res., 113, D04110, https://doi.org/10.1029/2007JD009132.

Chollet, F., 2015: Keras. https://keras.io.

Compo, G. P., and Coauthors, 2011: The Twentieth Century Re-

analysis Project.Quart. J. Roy. Meteor. Soc., 137, 1–28, https://

doi.org/10.1002/qj.776.

Conticello, F., F. Cioffi, B. Merz, and U. Lall, 2018: An event

synchronization method to link heavy rainfall events and

large-scale atmospheric circulation features. Int. J. Climatol.,

38, 1421–1437, https://doi.org/10.1002/joc.5255.

Cutler,A., andL.Breiman, 1994:Archetypal analysis.Technometrics,

36, 338–347, https://doi.org/10.1080/00401706.1994.10485840.

Dixon, K. W., J. R. Lanzante, M. J. Nath, K. Hayhoe, A. Stoner,

A. Radhakrishnan, V. Balaji, and C. F. Gaitán, 2016: Evalu-
ating the stationarity assumption in statistically downscaled

climate projections: Is past performance an indicator of fu-

ture results? Climatic Change, 135, 395–408, https://doi.org/

10.1007/s10584-016-1598-0.

Duin, R. P., and D. M. J. Tax, 2005: Statistical pattern recognition.

Handbook of Pattern Recognition and Computer Vision,

898 JOURNAL OF HYDROMETEOROLOGY VOLUME 20

Unauthenticated | Downloaded 03/08/21 01:02 PM UTC

https://doi.org/10.1175/JHM-D-14-0147.1
https://doi.org/10.1175/JHM-D-14-0147.1
https://doi.org/10.1007/s00382-017-3724-8
https://doi.org/10.1007/s00382-018-4223-2
https://doi.org/10.1007/s00382-018-4223-2
https://doi.org/10.1016/j.ejrh.2014.06.003
https://doi.org/10.1016/j.ejrh.2014.06.003
https://doi.org/10.1002/2016GL071917
https://doi.org/10.1002/2016GL071917
https://doi.org/10.1175/EI-D-17-0018.1
https://doi.org/10.1002/hyp.13296
https://doi.org/10.1175/JAMC-D-16-0250.1
https://doi.org/10.1175/JAMC-D-16-0250.1
https://doi.org/10.1029/2007JD009132
https://keras.io
https://doi.org/10.1002/qj.776
https://doi.org/10.1002/qj.776
https://doi.org/10.1002/joc.5255
https://doi.org/10.1080/00401706.1994.10485840
https://doi.org/10.1007/s10584-016-1598-0
https://doi.org/10.1007/s10584-016-1598-0


C. H. Chen, L. F. Pau, and P. S. P. Wang, Eds., World Scien-

tific, 3–24, https://doi.org/10.1142/1802.

Easton, Z. M., D. R. Fuka, M. T. Walter, D. M. Cowan, E. M.

Schneiderman, and T. S. Steenhuis, 2008: Re-conceptualizing

the soil and water assessment tool (SWAT) model to predict

runoff from variable source areas. J. Hydrol., 348, 279–291,

https://doi.org/10.1016/j.jhydrol.2007.10.008.

Farnham, D. J., S. Steinschneider, and U. Lall, 2017: Zonal

wind indices to reconstruct CONUS winter precipitation.

Geophys. Res. Lett., 44, 12 236–12 243, https://doi.org/10.1002/

2017GL075959.

——, J. Doss-Gollin, and U. Lall, 2018: Regional extreme pre-

cipitation events: robust inference from credibly simulated

GCM variables. Water Resour. Res., 54, 3809– 3824, https://

doi.org/10.1002/2017WR021318.

Goodfellow, I., Y. Bengio, A. Courville, andY. Bengio, 2016:Deep

Learning. MIT Press, 775 pp.

Hannachi, A., and N. Trendafilov, 2017: Archetypal analysis:

Mining weather and climate extremes. J. Climate, 30, 6927–

6944, https://doi.org/10.1175/JCLI-D-16-0798.1.

Hirabayashi, Y., R. Mahendran, S. Koirala, L. Konoshima,

D. Yamazaki, S. Watanabe, H. Kim, and S. Kanae, 2013:

Global flood risk under climate change. Nat. Climate Change,

3, 816–821, https://doi.org/10.1038/nclimate1911.

Huth, R., C. Beck, A. Philipp, M. Demuzere, Z. Ustrnul,

M. Cahynová, J. Kyselý, and O. E. Tveito 2008: Classifications

of atmospheric circulation patterns. Ann. N. Y. Acad. Sci.,

1146, 105–152, https://doi.org/10.1196/annals.1446.019.

Ivancic, T. J., and S. B. Shaw, 2015: Examining why trends in very

heavy precipitation should not be mistaken for trends in very

high river discharge. Climatic Change, 133, 681–693, https://

doi.org/10.1007/s10584-015-1476-1.

Jackson, K. S. and S. A. Vivian, 1997: Flood of March 1997

in Southern Ohio. USGS Water-Resources Investigations

Rep. 97–4149, 21 pp., https://pubs.usgs.gov/wri/1997/4149/

report.pdf.

Janssen, E., R. L. Sriver, D. J. Wuebbles, and K. E. Kunkel, 2016:

Seasonal and regional variations in extreme precipitation

event frequency using CMIP5. Geophys. Res. Lett., 43, 5385–

5393, https://doi.org/10.1002/2016GL069151.

Johnson, F., and A. Sharma, 2009: Measurement of GCM skill

in predicting variables relevant for hydroclimatological as-

sessments. J. Climate, 22, 4373–4382, https://doi.org/10.1175/

2009JCLI2681.1.

Kennel, C. F., S. Briggs, and D. G. Victor, 2016: Making climate

science more relevant. Science, 354, 421–422, https://doi.org/

10.1126/science.aag3248.

Knighton, J. O., and M. T. Walter, 2016: Critical rainfall statistics

for predicting watershed flood responses: Rethinking the de-

sign storm concept. Hydrol. Processes, 30, 3788–3803, https://

doi.org/10.1002/hyp.10888.

Knighton, J., S. Steinschneider, and M. T. Walter, 2017a: A

vulnerability-based, bottom-up assessment of future riverine

flood risk using a modified peaks-over-threshold approach

and a physically based hydrologic model. Water Resour. Res.,

53, 10 043–10 064, https://doi.org/10.1002/2017WR021036.

——, A. DeGaetano, and M. T. Walter, 2017b: Hydrologic state

influence on riverine flood discharge for a small temperate

watershed (Fall Creek, United States): Negative feedbacks on

the effects of climate change. J. Hydrometeor., 18, 431–449,

https://doi.org/10.1175/JHM-D-16-0164.1.

Krizhevsky, A., I. Sutskever, and G. E. Hinton, 2012: Imagenet

classification with deep convolutional neural networks.

Advances in Neural Information Processing Systems 25,

F. Pereira et al., Eds., Neural Information Processing Systems

Foundation, 1097–1105.

Lee, D., P. Ward, and P. Block, 2018: Attribution of large-scale

climate patterns to seasonal peak-flow and prospects for pre-

diction globally. Water Resour. Res., 54, 916–938, https://

doi.org/10.1002/2017WR021205.

Lukens, K. E., E. H. Berbery, and K. I. Hodges, 2018: The im-

print of strong-storm tracks on winter weather in North

America. J. Climate, 31, 2057–2074, https://doi.org/10.1175/

JCLI-D-17-0420.1.

Marjerison, R. D., M. T. Walter, P. J. Sullivan, and S. J. Colucci,

2016: Does population affect the location of flash flood re-

ports? J. Appl. Meteor. Climatol., 55, 1953–1963, https://

doi.org/10.1175/JAMC-D-15-0329.1.

Merz, B., and Coauthors, 2014: Floods and climate: Emerging

perspectives for flood risk assessment and management. Nat.

Hazards Earth Syst. Sci., 14, 1921, https://doi.org/10.5194/

nhess-14-1921-2014.

Mo, K. C., and R. W. Higgins, 1996: Large-scale atmospheric mois-

ture transport as evaluated in theNCEP/NCARand theNASA/

DAO reanalyses. J. Climate, 9, 1531–1545, https://doi.org/

10.1175/1520-0442(1996)009,1531:LSAMTA.2.0.CO;2.

Montavon, G., W. Samek, and K. R. Müller, 2018: Methods for

interpreting and understanding deep neural networks.

Digital Signal Process., 73, 1–15, https://doi.org/10.1016/

j.dsp.2017.10.011.

Murawski, A., G. Bürger, S. Vorogushyn, and B. Merz, 2016:

Can local climate variability be explained by weather pat-

terns? A multi-station evaluation for the Rhine basin.

Hydrol. Earth Syst. Sci., 20, 4283, https://doi.org/10.5194/

hess-20-4283-2016.

——, S. Vorogushyn, G. Bürger, L. Gerlitz, and B. Merz, 2018:

Do changing weather types explain observed climatic trends

in the Rhine Basin? An analysis of within-and between-type

changes. J. Geophys. Res. Atmos., 123, 1562–1584, https://

doi.org/10.1002/2017JD026654.

Nakamura, J., U. Lall, Y. Kushnir, A. W. Robertson, and

R. Seager, 2013: Dynamical structure of extreme floods in the

U.S. Midwest and the United Kingdom. J. Hydrometeor., 14,

485–504, https://doi.org/10.1175/JHM-D-12-059.1.

Nakamura, N., and C. S. Y. Huang, 2018: Atmospheric blocking

as a traffic jam in the jet stream. Science, 361, 42–47, https://

doi.org/10.1126/science.aat0721.

NCDC, 2018: Billion dollar weather and climate disasters. NOAA/

NCDC, https://www.ncdc.noaa.gov/billions/.

NCEI, 2018: Storm events database. NOAA/NCEI, https://

www.ncdc.noaa.gov/stormevents/.

NOAA, 2008: Flood event March 2008. NOAA/NWS, 9 pp.,

https://www.weather.gov/media/lsx/Events/03_18_2008.pdf.

——, 2018: CPC Unified gauge-based analysis of daily precipitation

over CONUS. NOAA/ESRL/PSD, https://www.esrl.noaa.gov/

psd/data/gridded/data.unified.daily.conus.html.

Perez, J., M. Menendez, F. J. Mendez, and I. J. Losada, 2014: Eval-

uating the performance of CMIP3 and CMIP5 global climate

models over the north-east Atlantic region. Climate Dyn., 43,

2663–2680, https://doi.org/10.1007/s00382-014-2078-8.

Rawat, W., and Z. Wang, 2017: Deep convolutional neural net-

works for image classification: A comprehensive review.

Neural Comput., 29, 2352–2449, https://doi.org/10.1162/

neco_a_00990.

Roller, C. D., J. H. Qian, L. Agel, M. Barlow, and V. Moron, 2016:

Winter weather regimes in the northeast United States.

MAY 2019 KN IGHTON ET AL . 899

Unauthenticated | Downloaded 03/08/21 01:02 PM UTC

https://doi.org/10.1142/1802
https://doi.org/10.1016/j.jhydrol.2007.10.008
https://doi.org/10.1002/2017GL075959
https://doi.org/10.1002/2017GL075959
https://doi.org/10.1002/2017WR021318
https://doi.org/10.1002/2017WR021318
https://doi.org/10.1175/JCLI-D-16-0798.1
https://doi.org/10.1038/nclimate1911
https://doi.org/10.1196/annals.1446.019
https://doi.org/10.1007/s10584-015-1476-1
https://doi.org/10.1007/s10584-015-1476-1
https://pubs.usgs.gov/wri/1997/4149/report.pdf
https://pubs.usgs.gov/wri/1997/4149/report.pdf
https://doi.org/10.1002/2016GL069151
https://doi.org/10.1175/2009JCLI2681.1
https://doi.org/10.1175/2009JCLI2681.1
https://doi.org/10.1126/science.aag3248
https://doi.org/10.1126/science.aag3248
https://doi.org/10.1002/hyp.10888
https://doi.org/10.1002/hyp.10888
https://doi.org/10.1002/2017WR021036
https://doi.org/10.1175/JHM-D-16-0164.1
https://doi.org/10.1002/2017WR021205
https://doi.org/10.1002/2017WR021205
https://doi.org/10.1175/JCLI-D-17-0420.1
https://doi.org/10.1175/JCLI-D-17-0420.1
https://doi.org/10.1175/JAMC-D-15-0329.1
https://doi.org/10.1175/JAMC-D-15-0329.1
https://doi.org/10.5194/nhess-14-1921-2014
https://doi.org/10.5194/nhess-14-1921-2014
https://doi.org/10.1175/1520-0442(1996)009<1531:LSAMTA>2.0.CO;2
https://doi.org/10.1175/1520-0442(1996)009<1531:LSAMTA>2.0.CO;2
https://doi.org/10.1016/j.dsp.2017.10.011
https://doi.org/10.1016/j.dsp.2017.10.011
https://doi.org/10.5194/hess-20-4283-2016
https://doi.org/10.5194/hess-20-4283-2016
https://doi.org/10.1002/2017JD026654
https://doi.org/10.1002/2017JD026654
https://doi.org/10.1175/JHM-D-12-059.1
https://doi.org/10.1126/science.aat0721
https://doi.org/10.1126/science.aat0721
https://www.ncdc.noaa.gov/billions/
https://www.ncdc.noaa.gov/stormevents/
https://www.ncdc.noaa.gov/stormevents/
https://www.weather.gov/media/lsx/Events/03_18_2008.pdf
https://www.esrl.noaa.gov/psd/data/gridded/data.unified.daily.conus.html
https://www.esrl.noaa.gov/psd/data/gridded/data.unified.daily.conus.html
https://doi.org/10.1007/s00382-014-2078-8
https://doi.org/10.1162/neco_a_00990
https://doi.org/10.1162/neco_a_00990


J. Climate, 29, 2963–2980, https://doi.org/10.1175/JCLI-D-15-

0274.1.

Russell, S. J., and P. Norvig, 2016:Artificial Intelligence: AModern

Approach. Pearson Education Limited, 1152 pp.

Sachindra, D. A., F. Huang, A. Barton, and B. J. C. Perera, 2013:

Least square support vector and multi-linear regression for

statistically downscaling general circulation model outputs to

catchment streamflows. Int. J. Climatol., 33, 1087–1106, https://
doi.org/10.1002/joc.3493.

Schneiderman, E. M., T. S. Steenhuis, D. J. Thongs, Z. M. Easton,

M. S. Zion,A. L. Neal, G. F.Mendoza, andM. T.Walter, 2007:

Incorporating variable source area hydrology into a curve-

number-based watershed model.Hydrol. Processes, 21, 3420–

3430, https://doi.org/10.1002/hyp.6556.

Shaw, T. A., and Coauthors, 2016: Storm track processes and the

opposing influences of climate change. Nat. Geosci., 9, 656–

664, https://doi.org/10.1038/ngeo2783.

Steinschneider, S., and U. Lall, 2015: Daily precipitation and

tropical moisture exports across the eastern United States: An

application of archetypal analysis to identify spatiotemporal

structure. J. Climate, 28, 8585–8602, https://doi.org/10.1175/

JCLI-D-15-0340.1.

——, and ——, 2016: Spatiotemporal structure of precipitation re-

lated to tropicalmoisture exports over the easternUnited States

and its relation to climate teleconnections. J. Hydrometeor., 17,

897–913, https://doi.org/10.1175/JHM-D-15-0120.

Stephens, G. L., and Coauthors, 2010: Dreary state of precipitation

in global models. J. Geophys. Res., 115, D24211, https://

doi.org/10.1029/2010JD014532.

Strobach, E., and G. Bel, 2017: The contribution of internal and

model variabilities to the uncertainty in CMIP5 decadal cli-

mate predictions.Climate Dyn., 49, 3221–3235, https://doi.org/

10.1007/s00382-016-3507-7.

Strong, C., and J. Liptak, 2012: Propagating atmospheric patterns

associated with Midwest winter precipitation. J. Hydrometeor.,

13, 1371–1382, https://doi.org/10.1175/JHM-D-11-0111.1.

Sullavan, J. N., F. Quinones, and R. F. Flint, 1979: Floods of

December 1978 in Kentucky. USGS Open-File Rep. 79–977,

53 pp., https://pubs.usgs.gov/of/1979/ofr79977/pdf/ofr_79-977.pdf.

Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview

of CMIP5 and the experiment design. Bull. Amer. Meteor.

Soc., 93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1.

Trenberth, K. E., 2011: Changes in precipitation with climate

change. Climate Res., 47, 123–138, https://doi.org/10.3354/

cr00953.

——, and C. J. Guillemot, 1998: Evaluation of the atmo-

spheric moisture and hydrological cycle in the NCEP/NCAR

reanalyses. Climate Dyn., 14, 213–231, https://doi.org/10.1007/

s003820050219.

Walter, M. T., E. S. Brooks, D. K. McCool, L. G. King,

M. Molnau, and J. Boll, 2005: Process-based snowmelt

modeling: Does it require more input data than temperature-

index modeling? J. Hydrol., 300, 65–75, https://doi.org/

10.1016/j.jhydrol.2004.05.002.

Wójcik, R., 2015: Reliability of CMIP5 GCM simulations in re-

producing atmospheric circulation over Europe and the

North Atlantic: A statistical downscaling perspective. Int.

J. Climatol., 35, 714–732, https://doi.org/10.1002/joc.4015.

Woollings, T., A. Hannachi, and B. Hoskins, 2010: Variability of

the North Atlantic eddy-driven jet stream. Quart. J. Roy.

Meteor. Soc., 136, 856–868, https://doi.org/10.1002/qj.625.

Wuebbles, D., and Coauthors, 2014: CMIP5 climate model

analyses: Climate extremes in the United States. Bull.

Amer. Meteor. Soc., 95, 571–583, https://doi.org/10.1175/

BAMS-D-12-00172.1.

Xie, P., M. Chen, S. Yang, A. Yatagai, T. Hayasaka, Y. Fukushima,

and C. Liu, 2007: A gauge-based analysis of daily precipitation

over East Asia. J. Hydrometeor., 8, 607–626, https://doi.org/

10.1175/JHM583.1.

Xu, C. Y., 1999: From GCMs to river flow: A review of down-

scaling methods and hydrologic modelling approaches.

Prog. Phys. Geogr., 23, 229–249, https://doi.org/10.1177/

030913339902300204.

Yosinski, J., J. Clune, A. Nguyen, T. Fuchs, and H. Lipson, 2015:

Understanding neural networks through deep visualization.

ArXiv, https://arxiv.org/abs/1506.06579.

Zappa, G., L. C. Shaffrey, K. I. Hodges, P. G. Sansom, and D. B.

Stephenson, 2013: A multimodel assessment of future pro-

jections of North Atlantic and European extratropical cy-

clones in theCMIP5 climatemodels. J. Climate, 26, 5846–5862,

https://doi.org/10.1175/JCLI-D-12-00573.1.

Zeiler, M. D., and R. Fergus, 2014: Visualizing and understanding

convolutional networks.ComputerVision –ECCV2014,D.Fleet

et al., Eds., Lecture Notes in Computer Science, Vol. 8689,

Springer, 818–833, https://doi.org/10.1007/978-3-319-10590-1_53.

Zhao, S., Y. Deng, and R. X. Black, 2017: A dynamical and sta-

tistical characterization of U.S. extreme precipitation events

and their associated large-scale meteorological patterns.

J. Climate, 30, 1307–1326, https://doi.org/10.1175/JCLI-D-15-

0910.1.

Zhu, Y., and R. E. Newell, 1998: A proposed algorithm for mois-

ture fluxes from atmospheric rivers. Mon. Wea. Rev., 126,
725–735, https://doi.org/10.1175/1520-0493(1998)126,0725:

APAFMF.2.0.CO;2.

900 JOURNAL OF HYDROMETEOROLOGY VOLUME 20

Unauthenticated | Downloaded 03/08/21 01:02 PM UTC

https://doi.org/10.1175/JCLI-D-15-0274.1
https://doi.org/10.1175/JCLI-D-15-0274.1
https://doi.org/10.1002/joc.3493
https://doi.org/10.1002/joc.3493
https://doi.org/10.1002/hyp.6556
https://doi.org/10.1038/ngeo2783
https://doi.org/10.1175/JCLI-D-15-0340.1
https://doi.org/10.1175/JCLI-D-15-0340.1
https://doi.org/10.1175/JHM-D-15-0120
https://doi.org/10.1029/2010JD014532
https://doi.org/10.1029/2010JD014532
https://doi.org/10.1007/s00382-016-3507-7
https://doi.org/10.1007/s00382-016-3507-7
https://doi.org/10.1175/JHM-D-11-0111.1
https://pubs.usgs.gov/of/1979/ofr79977/pdf/ofr_79-977.pdf
https://doi.org/10.1175/BAMS-D-11-00094.1
https://doi.org/10.3354/cr00953
https://doi.org/10.3354/cr00953
https://doi.org/10.1007/s003820050219
https://doi.org/10.1007/s003820050219
https://doi.org/10.1016/j.jhydrol.2004.05.002
https://doi.org/10.1016/j.jhydrol.2004.05.002
https://doi.org/10.1002/joc.4015
https://doi.org/10.1002/qj.625
https://doi.org/10.1175/BAMS-D-12-00172.1
https://doi.org/10.1175/BAMS-D-12-00172.1
https://doi.org/10.1175/JHM583.1
https://doi.org/10.1175/JHM583.1
https://doi.org/10.1177/030913339902300204
https://doi.org/10.1177/030913339902300204
https://arxiv.org/abs/1506.06579
https://doi.org/10.1175/JCLI-D-12-00573.1
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1175/JCLI-D-15-0910.1
https://doi.org/10.1175/JCLI-D-15-0910.1
https://doi.org/10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2
https://doi.org/10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2

