
Lecture 01: Introduction to Neural Network Theory, Failures of
Classical Theory

Geoff Pleiss

Neural networks are hierarchical models where each layer produces learned basis functions by applying a
simple non-linear transformation to linear combinations of outputs from the previous layer. The simplest
neural network, a multi-layer perceptron (MLP), follows the functional form:

fNN(x) =
d∑

i=1

βiϕ
(L)
i (x)

{
ϕ
(ℓ)
i = σ

(∑d
j=1w

(ℓ)
ij ϕ

(ℓ−1)
j (x)

)}L

ℓ=1

ϕ
(0)
i = xi.

(1)

Here, there are L layers, each of which has d units. The βi and w
(ℓ)
ij are the learned parameters of the

network. The function σ : R → R is the non-linear activation function that enables neural networks to
learn complex non-linear functions. Most neural networks use the rectified linear unit (ReLU) function
σ(x) = max(0, x).

x1

x2 ̂

ℓ(1)
1

ℓ(1)
2

ℓ(1)
D

W(1)

̂

ℓ(2)
1

ℓ(2)
2

ℓ(2)
D

fNN(x)βW(2)

Figure 1: Graphical depiction of a MLP with two hidden layers.

1) Why Neural Networks are Popular

Neural networks were historically motivated as a crude approximation to human brains. More recently,
researchers have instead pivoted to a less biological perspective to their success: neural networks are
powerful function approximators that learn hierarchical representations of data. Intuitively, the first layer
of a image neural network learns simple features that recognize edges and textures, the second layer
composes these features to recognize more complex shapes, and so on, leading to a final layer that can
recognize complex objects.

The simple answer as to why neural networks are popular is because of their empirical success. Over the
past 13 years, they have become the de facto standard machine learning algorithm for text data, image
data, graph data, and much more.

However, many statisticians and machine learning researchers resisted the use of neural networks, as

1



classical theory strongly suggested that they wouldn’t work. We will discuss two key failures of classical
learning theory to explain the success of neural networks.

2) Failures of Classical Theory: Generalization

Generalization is the ability of a learning algorithm A to produce a model f̂ : X → R that makes
accurate predictions on unseen data. It is often measured by risk:1

R(f̂) = E
[
ℓ(f̂(x), y)

]
where ℓ(f̂(x), y) is a loss function measuring the discrepancy between the prediction f̂(x) and the true
value y. (Note that expectation is taken with respect to all random quantities: the test input x, its
associated label y, and the training data/randomness used to produce f̂ from A.) We often assume that
the training data {(xi, yi)}ni=1 are drawn i.i.d. from the same distribution as the test data.

For the past half century, the theoretical grounding of machine learning was centered on the the framework
of empirical risk minimization (ERM)2—or, equivalently, the probably approximately correct
(PAC) framework. Essentially, the ERM principle justifies the use of the model f within some function
space/hypothesis class H that minimizes the empirical risk Remp, i.e. the training loss:

A → f̂ = argmin
f∈H

Remp(f) =
1

N

n∑
i=1

ℓ(f(xi), yi) (2)

Empirical risk minimization relies on a function space/hypothesis class H that admits a uniform law of
large numbers. Unlike the standard LLN, a uniform LLM implies that any empirical average involving a
function f ∈ H converges to the true average and the rate of convergence is bounded for all f ∈ H. In other
words, the empirical risk Remp(f̂) measured on the training data will eventually converge to the true test

error of f̂ , even though f̂ is chosen using the training data! And moreover, since f̂ minimizes the loss over
the training data, as n → ∞ (and thus the training data distribution converges to the true distribution),
we have that f̂ → argminf∈HR(f).

Under a finite amount of training data, we can still get a provable ERM guarantee for any H that admits
a uniform LLN:

Remp(f̂)−min
f∈H

R(f) ≤ Õ

(√
cap(H)

n

)
, (3)

where cap(H) is a measure of the capacity of the function space H. 3 If H is a set with a finite number of
elements, then cap(H) = O(log |H|).If H has infinitely many elements, then the VC-dimension is a common
measure of complexity. It is worth noting that this bound is tight for most notions of capacity; one can
always construct some dataset and some H where the gap between empirical and true risk scales exactly
as
√

cap(H)/n. A high-capacity H thus implies a larger gap between the empirical and true risk, which is
indicative of overfitting.

1Denoting risk by R(f̂) is a slight abuse of notation. Technically, risk is a function of the learning algorithm A that
produces f̂ , since f̂ is a random variable. In a further abuse of notation, we will also use R(f) to denote the risk of a fixed
function f ∈ H.

2Technically, structural risk minimization (SRM)—a geneneralization of ERM—has been the basis. Essentially, SRM is
ERM with a regularization term.

3The Õ notation is the standard big-O notation where logarithmic factors are suppressed.

2



Neural networks have a finite number of parameters and thus admit a uniform LLN. However, the extremely
large number of parameters also implies a large capacity. Almost every notion of capacity—including VC-
dimension, spectral bounds, and margin bounds—result in vaccuous generalization guarantees [Jiang et al.,
2020], where the best bound between Remp(f̂) and minf∈HR(f̂) is worse than the risk associated with
random guessing.

Yet neural networks, which are trained to minimize the empirical risk, generalize well in practice. These
results suggest that either (1) we do not have a reliable measure of capacity for large neural networks, or
(2) we have to look beyond the ERM principle to understand why neural networks generalize well.

3) Failures of Classical Theory: Optimization

The ERM analysis also assumes that, in practice, we are able to find the model that globally minimizes of
the empirical risk. For most classical machine learning models, the empirical risk minimization problem
is convex, and so global minimization can be performed in polynomial time. Though some “classical”
machine learning models feature non-convex optimization problems, they are usually structured in a way
where greedy optimization algorithms can find minima that are provably close to global minima.

Neural networks on the surface feature no special structure that would make optimization easy. Even
if one were to remove the non-linear activation functions, the presence of multiple layers makes neu-
ral network training non-convex. Yet in practice modern neural networks (with SGD optimization, ReLU
non-linearities, and normalization layers) are generally able to achieve essentially zero training error. More-
over, though two neural networks trained from a different initializations will converge to different sets of
parameters, they will generally achieve almost the exact same training and test error!

4) Understanding Deep Learning Requires Rethinking Generalization

In a landmark paper entitled “Understanding Deep Learning Requires Rethinking Generalization,” Zhang
et al. [2017] highlighted just how large the gap between classical theory and practice is. The authors
performed a very simple experiment: they trained several common neural network architectures on a
standard image classification benchmark (CIFAR-10). However, they randomly permuted the labels for
some portion the training data—i.e. some portions of “dog” images were assigned the label “cat” and vice
versa. The authors found that, even if 100% of labels were corrupted so that the labels were completely
uninformative, the neural networks could still be trained to achieve 0% training error. This implies that
the neural networks had the capacity to memorize the training data—as there was absolutely no “signal”
in the images that influence the assigned training labels.

Unsurprisingly, the test error (on uncorrupted labels) was quite large when the training labels were cor-
rupted, and the test error grew proportionally with the fraction of corrupted labels. What is surprising is
that the test error did not grow as quickly as one might expect. Despite the fact that the neural networks
were memorizing incorrect labels, the resulting models were still able to make predictions better than
random guessing on (uncorrupted) unseen data!

This paper shocked the machine learning community, which was already convinced that we did not under-
stand neural networks. It demonstrated that modern neural networks

• have sufficient capacity to memeorize large training sets;

• achieve zero training error, even on corrupted data, despite a non-convex training objective; and

3



(a) learning curves (b) convergence slowdown (c) generalization error growth

Figure 1: Fitting random labels and random pixels on CIFAR10. (a) shows the training loss of
various experiment settings decaying with the training steps. (b) shows the relative convergence
time with different label corruption ratio. (c) shows the test error (also the generalization error since
training error is 0) under different label corruptions.

To gain further insight into this phenomenon, we experiment with different levels of randomization
exploring the continuum between no label noise and completely corrupted labels. We also try out
different randomizations of the inputs (rather than labels), arriving at the same general conclusion.

The experiments are run on two image classification datasets, the CIFAR10 dataset (Krizhevsky
& Hinton, 2009) and the ImageNet (Russakovsky et al., 2015) ILSVRC 2012 dataset. We test the
Inception V3 (Szegedy et al., 2016) architecture on ImageNet and a smaller version of Inception,
Alexnet (Krizhevsky et al., 2012), and MLPs on CIFAR10. Please see Section A in the appendix for
more details of the experimental setup.

2.1 FITTING RANDOM LABELS AND PIXELS

We run our experiments with the following modifications of the labels and input images:

• True labels: the original dataset without modification.

• Partially corrupted labels: independently with probability p, the label of each image is
corrupted as a uniform random class.

• Random labels: all the labels are replaced with random ones.

• Shuffled pixels: a random permutation of the pixels is chosen and then the same permuta-
tion is applied to all the images in both training and test set.

• Random pixels: a different random permutation is applied to each image independently.

• Gaussian: A Gaussian distribution (with matching mean and variance to the original image
dataset) is used to generate random pixels for each image.

Surprisingly, stochastic gradient descent with unchanged hyperparameter settings can optimize the
weights to fit to random labels perfectly, even though the random labels completely destroy the
relationship between images and labels. We further break the structure of the images by shuffling
the image pixels, and even completely re-sampling random pixels from a Gaussian distribution. But
the networks we tested are still able to fit.

Figure 1a shows the learning curves of the Inception model on the CIFAR10 dataset under vari-
ous settings. We expect the objective function to take longer to start decreasing on random labels
because initially the label assignments for every training sample is uncorrelated. Therefore, large
predictions errors are back-propagated to make large gradients for parameter updates. However,
since the random labels are fixed and consistent across epochs, the network starts fitting after going
through the training set multiple times. We find the following observations for fitting random labels
very interesting: a) we do not need to change the learning rate schedule; b) once the fitting starts,
it converges quickly; c) it converges to (over)fit the training set perfectly. Also note that “random
pixels” and “Gaussian” start converging faster than “random labels”. This might be because with

Figure 2: Training error and test error on CIFAR-10 as a function of the fraction of corrupted labels.
Reproduced from [Zhang et al., 2017].

• generalize to unseen data, even when the noisy training data are memorized.

5) Outline of This Course

Throughout this course, we will investigate why neural networks generalize and optimize well despite
overparameterization and non-convexity. As we will see, the answers flip classical intuitions on their head:
neural networks generalize and optimize well because of, not in spite of, their overparameterized nature.

We will begin by investigating the generalization properties of high-dimensional linear regression, which
will serve as a foundation when we move to neural networks. Despite the ubiquity of linear regression, many
of the generalization results that we will discuss are from the past 5 years, as researchers had previously
not thought to investigate models that are overparameterized and interpolate/memorize the training data.

We will then connect the results from linear regression to deep learning through the study of infinite width
neural networks. Recent landmark results have shown that neural networks become increasingly similar
to kernelized linear regressors as width approaches infinity. Though these results do not fully explain the
success of (finite width) models, they being to unlock why “bigger is better” for neural networks.

With time permitting, we will discuss more recent developments in the theory of neural networks, including
analyses of feature learning and scaling laws.

References

M. Belkin. Fit without fear: Remarkable mathematical phenomena of deep learning through the prism of interpola-
tion. Acta Numerica, 30:203–248, 2021.

Y. Jiang, B. Neyshabur, H. Mobahi, D. Krishnan, and S. Bengio. Fantastic generalization measures and where to
find them. In International Conference on Learning Representations, 2020.

C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep learning requires rethinking general-
ization. In International Conference on Learning Representations, 2017.

4


	Why Neural Networks are Popular
	Failures of Classical Theory: Generalization
	Failures of Classical Theory: Optimization
	Understanding Deep Learning Requires Rethinking Generalization
	Outline of This Course

