
Lecture 02: Reproducing Kernel Hilbert Spaces
Geoff Pleiss

Reproducing kernel Hilbert spaces (RKHS) are function spaces that play an important role in the analysis of
neural networks and other machine learning models. These spaces contain “complex” non-linear functions,
yet the spaces are surprisingly structured in a way that’s amenable to theoretical analysis.

Most texts introduce RKHS from a functional analysis perspective. Here we will provide a simpler intro-
duction, starting with spaces of finite-dimensional linear functions and gaining complexity. The goal is
to elevate concepts from standard matrix-based linear algebra into abstract infinite-dimensional spaces of
functions.

These notes are a brief introduction to RKHS, foregoing many important properties and theorems. See
[Wainwright, 2019, Ch. 12] for a thorough reference.

1) Linear Functions and Inner Products

Consider the space of R → R functions

H =

f(x) =

d∑
j=1

[θ2j−1 cos(jx) + θ2j sin(jx)] : θ1, . . . , θ2d ∈ R


for some d ∈ N. The space considers all linear functions that can be built off of a 2d-dimensional Fourier
basis expansion of x. Note that any function f(·) ∈ H can be written as:

f(x) =

〈 θ1
...

θ2d


︸ ︷︷ ︸

θ

,

 cos(x)
...

sindx(x)


︸ ︷︷ ︸

z(x)

〉
, (1)

where θ ∈ R2d are the function parameters and z : R → R2d is the Fourier basis expansion function.
We refer to z(x) ∈ R2d as a feature representation of x. Assuming the basis expansion is fixed, any
f(·) ∈ R2d is entirely specified by θ, and so we can implicitly define f(·) through θ. We thus refer to θ as
the function representation of f(·).

Evaluating f(·) on any input x requires computing an inner product between two vectors: θ and z(x).
While this fact may seem straightforward, it unearths a lot of interesting complexities:

• The inner product we use to evaluate f(x) can also be used to compare two functions. I.e., given
f(x) = ⟨θ, z(x)⟩ and f̃(x) = ⟨θ̃, z(x)⟩, we can compute ⟨θ, θ̃⟩.

– We can also use the same inner product to define a norm ∥θ∥ = ⟨θ,θ⟩1/2.

• For any x′ ∈ R, the vector z(x′) is also a R2d vector and thus parameterizes a function in H. (I.e.
there exists some kx′(x) = ⟨z(x′), z(x)⟩.)

– In other words, for every x, we have a function representation kx(·) in addition to its feature
representation z(x)!
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2) From Inner Products on Vectors to Inner Products on Functions

Because there is a one-to-one mapping between vectors θ, θ̃, z(x′) ∈ R2d to functions f(·), f̃(·), kx′(·) ∈ H,
we can define an inner product on H using our inner product over R2d:〈

f(·), f̃(·)
〉
H
:=

〈
θ, θ̃

〉
(f(·) = ⟨θ, z(·)⟩, f̃(·) = ⟨θ̃, z(·)⟩)

Curiously, since kx′(·) = ⟨z(x′), z(·)⟩ ∈ H, our inner product over H can be used to evaluate H functions!

f(x′) = ⟨f(·), kx′(·)⟩H = ⟨θ, z(·)⟩ (f(·) = ⟨θ, z(·)⟩, kx′(·) = ⟨z(x′), z(·)⟩)

We thus refer to kx′(·) as the evaluation function for x′.

3) Dual (Data-Based) Representations and Kernel Functions

Given a set of x1, . . . , x2d so that z(x1), . . . ,z(x2d) spans R2d, any θ ∈ R2d can be defined as
∑2d

j=1 αjz(xj)
for some α1, . . . , α2d, and thus any f(·) ∈ H can be written as

f(·) =

〈 2d∑
j=1

αjz(xj)

 , z(·)

〉
=

2d∑
j=1

αj ⟨z(xj), z(·)⟩ =
2d∑
j=1

αj

〈
kxj (·), kx(·)

〉︸ ︷︷ ︸
:=k(xj ,x)

.

In other words, any function f ∈ H admits a dual (data-based) representation through the kernel
function k(·, ·):

H =

f(·) =
2d∑
j=1

αjk(xj , ·), : αj ∈ R, xj ∈ R

 . (2)

There is a deep connection between this dual representation and standard training of machine learning
algorithms:

Theorem 1 (Representer Theorem [Kimeldorf and Wahba, 1970, Schölkopf et al., 2001]). Given training
data (x1, y1), . . . , (xn, yn), some loss function ℓ(f(x), y), and some regularization parameter λ > 0, the
solution to the regularized training objective can be written as

f∗(x) =
n∑

j=1

αjk(xj , x)

for some α1, . . . , αn.

4) Spectrum of the Kernel Function

The kernel function k(x, x′) = ⟨z(x), z(x′)⟩ has some curious properties.

• For any x1, . . . , xn, the matrixk(x1, x1) . . . k(x1, xn)
...

. . .
...

k(xn, x1) . . . k(xn, xn)

 =

z(x1)
⊤

...
z(xn)

⊤

 [
z(x1) . . . z(xn)

]
is positive definite.
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• k(x, x′) can be defined through the eigenvalues of the matrix E[z(x)z(x)⊤] ∈ R2d×2d. Letting V ΛV ⊤

be an eigendecomposition of Σ := E[z(x)z(x)⊤], define

{ϕj(·) = λ
−1/2
j ⟨vj , z(·)⟩}2dj=1

as eigenfunctions of H (where vj and λj are the columns of V and diagonals of Λ respectively).
Then:

k(x, x′) = ⟨z(x), z(x′)⟩ =
(
z(x)⊤V Σ−1/2

)
Σ
(
Σ−1/2V z(x′)

)
=

2d∑
j=1

λj

(
λ
−1/2
j v⊤

j z(x)
)(

λ
−1/2
j v⊤

j z(x)
)

=

2d∑
j=1

λjϕj(x)ϕj(x
′). (3)

Moreover, we can easily verify that:

E[ϕi(x)ϕj(x)] = E[
(
λ
−1/2
i λ

−1/2
j

)
v⊤
i z(x)z(x)

⊤vj ]

=
(
λ
−1/2
i λ

−1/2
j

)
v⊤
i Σvj

= δij =

{
1 i = j

0 i ̸= j

This spectral representation of k(·, ·) contains lots of information about H. Since Σ is positive definite, we
know that λ1, . . . , λd > 0. If the eigenvalues decay quickly, then Σ is low-rank implying that many of the
features in z(·) are co-linear/redundant. This implies that H may be an “intrinsically low-dimensional”
space (approximately few degrees of freedom) even though there are actually 2d parameters to fit.

5) Reproducing Kernel Hilbert Spaces

Why did we go through the trouble of defining:

• an inner product over functions,

• a data-based representation of functions, and

• an eigendecomposition of a function?

It turns out this is the right abstraction to define powerful spaces of functions with remarkably easy-to-
analyze properties. Everything we just defined holds even if we change the feature representation or even
if we take d → ∞.

Definition 1 (Reproducing Kernel Hilbert Spaces (RKHS)). Given a positive definite kernel function
k(·, ·) : X × X → R; i.e. a function that can be written as:

k(x, x′) =
∞∑
i=1

λiϕi(x)ϕi(x
′), λ1 ≥ λ2 ≥ . . . ≥ 0, E[ϕi(x)ϕi(x

′)] = δij ,
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a reproducing kernel Hilbert space H is the space1 of X → R functions that can be written as

f(·) =
n∑

i=1

αik(xi, ·), n ∈ N, {xi}ni=1 ∈ X . (4)

The inner product associated with H is given by

〈
f(·), f̃(·)

〉
=

n∑
i=1

ñ∑
j=1

αiα̃jk(xj , x̃j).

Note that we could have alternatively defined the RKHS using the infinite-dimensional feature expansion
implied by the eigendecomposition of k(·, ·):

H =

f(·) =
∞∑
j=1

θj

(
λ
1/2
j ϕ(·)

)
, θ1, θ2, . . . ∈ R

 .

(As an exercise, you should show that these two definitions yield the same space of functions.) However,
rather than dealing with infinite-dimensional vectors, we can instead deal with scalar kernel functions
k(x,x′). This abstraction will yield simple closed-form expressions of neural network as well as straight-
forward analyses of their generalization properties.

The only portion of the feature expansion we will consider are the eigenvalues λ1, λ2, . . . associated with
k(x,x′). As discussed above, the rate of decay of this spectrum tells us about the relative complexity of
H, which will be necessary for the analysis of generalization.
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1Technically, H is the completion of the space defined by Eq. (4).
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