
Lecture 03: Implicit Bias of (Stochastic) Gradient Descent, Double
Descent

Geoff Pleiss

Back in the first lecture, we discussed the “classical” risk bound for an ERM-learned model f̂ ∈ H:

Remp(f̂)−R(f̂) ≤ Õ
(√

cap(H)/n
)
, Remp(f̂)−min

f∈H
R(f) ≤ Õ

(√
cap(H)/n

)
,

where cap(H) is some notion of capacity of the hypothesis space H. If H is too restrictive of a hypothesis
class, then minf∈HR(f) will be too small; conversely if H is too expressive, then cap(H) and thus the gap
between the empirical and true risk will be too large. From the perspective of the bias-variance tradeoff, the
former case is indicative of high bias (underfitting) and the latter is indicative of high variance (overfitting).
Both scenarios result in poor generalization, as depicted in this toy diagram below:
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Figure 1: Curves for training risk (dashed line) and test risk (solid line). (a) The classical
U-shaped risk curve arising from the bias-variance trade-o↵. (b) The double descent risk curve,
which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed
behavior from using high capacity function classes (i.e., the “modern” interpolating regime), sep-
arated by the interpolation threshold. The predictors to the right of the interpolation threshold
have zero training risk.

When function class capacity is below the “interpolation threshold”, learned predictors exhibit
the classical U-shaped curve from Figure 1(a). (In this paper, function class capacity is identified
with the number of parameters needed to specify a function within the class.) The bottom of the
U is achieved at the sweet spot which balances the fit to the training data and the susceptibility
to over-fitting: to the left of the sweet spot, predictors are under-fit, and immediately to the
right, predictors are over-fit. When we increase the function class capacity high enough (e.g.,
by increasing the number of features or the size of the neural network architecture), the learned
predictors achieve (near) perfect fits to the training data—i.e., interpolation. Although the learned
predictors obtained at the interpolation threshold typically have high risk, we show that increasing
the function class capacity beyond this point leads to decreasing risk, typically going below the risk
achieved at the sweet spot in the “classical” regime.

All of the learned predictors to the right of the interpolation threshold fit the training data
perfectly and have zero empirical risk. So why should some—in particular, those from richer
functions classes—have lower test risk than others? The answer is that the capacity of the function
class does not necessarily reflect how well the predictor matches the inductive bias appropriate for
the problem at hand. For the learning problems we consider (a range of real-world datasets as well
as synthetic data), the inductive bias that seems appropriate is the regularity or smoothness of
a function as measured by a certain function space norm. Choosing the smoothest function that
perfectly fits observed data is a form of Occam’s razor: the simplest explanation compatible with
the observations should be preferred (cf. [38, 6]). By considering larger function classes, which
contain more candidate predictors compatible with the data, we are able to find interpolating
functions that have smaller norm and are thus “simpler”. Thus increasing function class capacity
improves performance of classifiers.

Related ideas have been considered in the context of margins theory [38, 2, 35], where a larger
function class H may permit the discovery of a classifier with a larger margin. While the margins
theory can be used to study classification, it does not apply to regression, and also does not pre-
dict the second descent beyond the interpolation threshold. Recently, there has been an emerging
recognition that certain interpolating predictors (not based on ERM) can indeed be provably sta-
tistically optimal or near-optimal [3, 5], which is compatible with our empirical observations in the
interpolating regime.

In the remainder of this article, we discuss empirical evidence for the double descent curve, the
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Figure 1: The classical bias-variance tradeoff. Reproduced from [Belkin et al., 2019].

If we consider neural networks with d parameters, increasing p will increase the capacity of the hypothesis
class (as measured by any standard notion). We would thus expect large neural networks, which have
many more parameters p than training data points n, to be in the extremely high variance regime where
we are overfitting like crazy. Instead, something weird happens as we vary p:

Figure 4: Double descent risk curve for fully connected neural network on MNIST.
Training and test risks of network with a single layer of H hidden units, learned on a subset of
MNIST (n = 4 ·103, d = 784, K = 10 classes). The number of parameters is (d+1) ·H +(H +1) ·K.
The interpolation threshold (black dotted line) is observed at n · K.
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Figure 2: Training and test loss for a 2-layer neural network trained on MNIST as a function of p (the
number of learnable parameters). Reproduced from [Belkin et al., 2019].

On the left side of the dashed line, the training and test error seem to follow the classical bias-variance
tradeoff we see in Fig. 1. However, passed the dashed line the test error decreases as we increase p! It
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appears that we can increase p to infinity and somehow we would still get better generalization than what
we would have achieved on the left side of the dashed line. Moreover, we are obtaining this decrease in
test error even though we’re in the regime where the model (nearly) interpolates the training data—i.e.
it has (nearly) zero training error.

This double descent curve, first characterized by Belkin et al. [2019], is not unique to neural networks.
We can reproduce it in linear regression.

Figure 2: Double descent risk curve for RFF model on MNIST. Test risks (log scale),
coe↵cient �2 norms (log scale), and training risks of the RFF model predictors hn,N learned on a
subset of MNIST (n = 104, 10 classes). The interpolation threshold is achieved at N = 104.
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Figure 3: Training and test loss for a linear regression model trained on a basis expansion of some data
as a function of p (the number of basis functions). These linear regressors are trained on a n = 10,000 set
of training data. Reproduced from [Belkin et al., 2019].

Fig. 3 depicts the exact same test/train error curves for a linear regression model trained without any
regularization. We are regressing on a basis expansion of some data, and as we move along the x axis we
add more basis functions that represent our data. The number of parameters in p—equal to the number
of basis functions we have in our representation. Moreover, the dashed-line inflection point perfectly
corresponds with the point where n = p.

Why does this double descent phenomenon occur? Beyond the dashed line we have more than enough
capacity to perfectly fit the training data, and—without regularization—we are not specifying which of the
infinitely many interpolating models we should choose. The answer is subtle but profound. Even though
the capacity of the neural network/linear regressor grows as p increases, the optimization algorithm we use
happens to concentrate us on a magical solution with good generalization properties.

1) Overparameterized Ridgeless Linear Regression Has Infinitely Many Solutions

Consider ridge regression in the p > n setting (where we ignore the 1/n factor in the loss):

min
θ

1

2

n∑
i=1

(
x⊤
i θ − yi

)2
+

λ

2
∥θ∥22

=min
θ

1

2
∥Xθ − y∥22 +

λ

2
∥θ∥22

X =

x
⊤
1
...

x⊤
n

 ∈ Rn×p, y =

y1...
yn

 ∈ Rn.

This optimization problem is strictly convex and so has a unique global minimum that can be found with
(stochastic) gradient descent. It also happens to have a closed form solution, which can be found by setting
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the gradient to zero and solving analytically:

θ∗
λ =

(
X⊤X + λI

)−1
X⊤y

= X⊤
(
XX⊤ + λI

)−1
y. (1)

What now happens in the ridgeless case, where instead we are just solving minθ
1
2∥Xθ − y∥22? If p > n

and X is full rank, there are now infinitely many θ that perfectly fit the data, achieving the minimum loss
of zero. This optimization problem is still convex, but it is no longer strictly convex. The solution that we
arrive at will depend on the optimization algorithm.

2) The Minimum Norm Solution

Imagine we have an infinitesimal amount of regularization. By Eq. (1), the (nearly-)ridgeless regressor will
arrive at the solution

θ∗
0 := lim

λ→0
θ∗
λ = X⊤

(
XX⊤

)−1
y.

It can easily be seen that this solution (nearly) interpolates the data. There is something very special
about this solution: it is the minimum norm solution that interpolates the data. That is:

θ∗
0 = argmin

Xθ=y
∥θ∥22. (2)

Using the functional perspective we developed last lecture, if H is the RKHS of linear functions of x, then

f∗(x) = x⊤θ∗
0 = argmin

f∈I
∥f∥2H, I := {f ∈ H : f(xi) = yi ∀i ∈ [1, n]} . (3)

While we could prove the minimum norm nature of θ∗
0 from the Eq. (2) perspective, we will prove it from

the Eq. (3) perspective to generalize to arbitrary RKHS.

Proof. Let H be some RKHS with associated kernel k(x,x′). Given the training set {(xi, yi)}ni=1, we will
split H into two orthogonal subspaces Hn and H⊥:

Hn := span {k(xi, ·)}ni=1 , H⊥ := {g ∈ H : ⟨fn, g⟩H = 0 ∀fn ∈ Hn} .

Any function f ∈ H can be decomposed as

f(·) = fn(·)︸︷︷︸
∈Hn

+ f⊥(·)︸ ︷︷ ︸
∈H⊥

.

Note that

∥f∥2H = ⟨fn + g, fn + g⟩H = ∥fn∥2H + ∥g∥2H +�����:0
2⟨fn, g⟩H

If f ∈ I (as defined in Eq. (3)), then f(xi) = fn(xi) + g(xi) = yi for all i. However, by the reproducing
property of H and the definition of H⊥:

g(xi) = ⟨g(·), k(xi, ·)⟩H = 0. (k(xi, ·) ∈ Hn, definition of H⊥)
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Therefore, fn(·) ∈ I. Since fn(·) =
∑n

i=1 αik(xi, ·) for some αi ∈ R, we have thaty1...
yn


︸ ︷︷ ︸

y

=

fn(x1)
...

fn(xn)

 =

k(x1,x1) · · · k(x1,xn)
...

. . .
...

k(xn,x1) · · · k(xn,xn)


︸ ︷︷ ︸

:=K

α1
...
αn


︸ ︷︷ ︸
:=α

,

which implies that α = K−1y parameterizes the unique interpolating function in Hn.

Thus, the set of interpolants I is given by

I =

f∗
n(·)︸ ︷︷ ︸
∈Hn

+ g(·)︸︷︷︸
∈H⊥

: f∗
n(·) =

n∑
i=1

αik(xi, ·)

 .

And since ∥f∥2H = ∥f∗
n∥2H + ∥g∥2H, for all f ∈ I, we obtain the minimum norm solution by setting g = 0.

Finally, note that in the linear case where k(x,x′) = x⊤x′, we have:

f∗
n(x) =

[
k(x,x1) · · · k(x,xn)

]
K−1y = x

(
X⊤

(
XX⊤

)−1
y

)
= x⊤θ∗

0.

Why is a minimum norm solution desirable? If we think of ∥f∥H as a measure of the complexity of f , then
the minimum norm interpolator is the “least complex” function that interpolates the data [Belkin et al.,
2018].

Put a different way, imagine we had two training sets: D1 and D2. Ideally we would not want the functions
learned from these two training sets to be too different (i.e. we want low variance). Let I1 ⊂ H and I2 ⊂ H
be the sets of interpolating functions for each training set. By the previous proof, we know that both
subsets are affine subspaces of H. Changing the data will change the “angle” of the subspace. If we are
far away from the origin, even a slight change in “angle” could produce very different functions. However,
the minimum norm solutions in I1 and I2 are “close” to the origin, and so the “slight difference in angle”
between I1 and I2 will not produce very different functions. See Fig. 4 for an illustration.

3) The Implicit Bias of Gradient Descent

Magically, gradient descent will generally find the minimum norm solution for overparameterized linear
regression. It’s worth reflecting on this fact for a moment. We have a problem with infinitely many global
optima, and gradient descent happens to choose the one that is “simplest” [Zhang et al., 2017].

Theorem 1. Consider the ridgeless linear regression problem minθ L(θ) = minθ
1
2∥Xθ − y∥22 with p > n.

If we initialize optimization from any θ(0) ∈ collspace{X⊤}, and run gradient descent with step size
γ < σmax(X)2 (where σmax(X) is the largest singular value of X), then the limit of the iterates is the
minimum norm solution θ∗

0.

Proof. Let UΣV ⊤ = X be the singular value decomposition of X, with U ,Σ ∈ Rn×n and V ∈ Rp×n.
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Figure 4: The sets of interpolating functions I1 and I2 for two different training datasets D1 and D2 are
affine subspaces of H. The minimum norm solutions θ1

0 and θ2
0 are “close” to the origin, and so the “slight

difference in angle” between I1 and I2 will not produce very different functions.

Since θ(0) ∈ collspace{X⊤}, we have θ0 = V β0 for some β0 ∈ Rn. Now assume that it also holds that
θ(i) = V β(i) for some β(i) ∈ Rn. Gradient descent performs the iteration

θ(i+1) = θ(i) − γ∇L(θ(i)) = θ(i)︸︷︷︸
V β(i)

− γX⊤
(
Xθ(i) − y

)
,︸ ︷︷ ︸

V
(
γΣU⊤

)(
UΣV ⊤V β(i) − y

)
︸ ︷︷ ︸

V (γΣ2β(i)−γΣUy)

and so θ(i+1) can also be written as V β(i+1) for some β(i+1) ∈ Rn. We can thus rewrite the update rule in
the projection onto collspace{X⊤}:

β(i+1) = β(i) − γΣ2β(i) + γUy =
(
I − γΣ2

)
β(i) + γΣUy, θ(i+1) = V β(i+1).

A simple induction will show that this recursion admits the closed form:

β(i) =
(
I − γΣ2

)i
β(0) +

i−1∑
j=1

(
I − γΣ2

)j
γΣUy.

Note that—by the assumption on γ—the matrix I − γΣ2 is positive definite with eigenvalues strictly less
than 1. As i → ∞, the matrix

(
I − γΣ2

)i
thus converges to zero and the summation becomes the Taylor

series for a matrix inverse:

lim
i→∞

i−1∑
j=1

(
I − γΣ2

)j
=

(
I −

(
I − γΣ2

))−1
=

1

γ
Σ−2

Thus, limi→∞ β(i) = Σ−1Uy, and so

lim
i→∞

θ(i) = V Σ−1Uy = V ΣU⊤U⊤Σ−1Uy = X⊤
(
XX⊤

)−1
y = θ∗

0.
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Note that stochastic gradient descent also converges to the minimum norm solution, even if gradient descent
is initialized outsized the column space of X. However the proof is much more complicated. We refer to
this minimum-norm-seeking behaviour as the implicit bias of (stochastic) gradient descent.

4) Putting it All Together

We now have a clearer picture of what’s going on with double descent, at least in the case of ridgeless linear
regression. Let’s re-examine Fig. 3. The left side of the dotted line represents the underparameterized
regime where p < n and linear regression does not interpolate data. In this regime the test error follows a
classical bias-variance tradeoff: increasing the number of parameters decreases bias but increases variance,
resulting in an initial decline in test error followed by an increase as p → n.

Now consider the point on the right where p = 60,000. Let H60,000 be the space of linear functions over
these p = 60,000. All of the linear models represented by this plot are members of H60,000. (For example,
the regressor with p = 100 features could be written as a function in H60,000 where 59,900 of the coefficients
are zero.) All of the models on the right side of the dotted line p > n are thus interpolating functions in
H60,000. However, the rightmost model is—by definition—the minimum norm interpolator in H60,000, and
so all other interpolating functions will have a larger norm, and thus more likely to be higher variance.
(See Fig. 5 for an illustration.) In the next lecture we will try to formalize this intuition.
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Figure 3: Plot of two univariate functions fitted to 10 data points using Random ReLU features
�(x; (v1, v2)) := max(v1x + v2, 0). The data points are shown in red circles. The fitted function
with N = 40 Random ReLU features is the blue dashed line; the coe↵cient vector’s norm (scaled
by

!
N) is 1 695. The fitted function with N = 4000 Random ReLU features is the black solid

line; the coe↵cient vector’s norm is 1 159.

threshold), features not present or only weakly present in the data are forced to fit the training data
nearly perfectly. This results in classical over-fitting as predicted by the bias-variance trade-o� and
prominently manifested at the peak of the curve, where the fit becomes exact.

To the right of the interpolation threshold, all function classes are rich enough to achieve zero
training risk. For the classes HN that we consider, there is no guarantee that the most regular,
smallest norm predictor consistent with training data (namely hn,p, which is in Hp) is contained
in the class HN for any finite N . But increasing N allows us to construct progressively better
approximations to that smallest norm function. Thus we expect to have learned predictors with
largest norm at the interpolation threshold and for the norm of hn,N to decrease monotonically
as N increases thus explaining the second descent segment of the curve. This is what we observe
in Figure 2, and indeed hn,p has better accuracy than all hn,N for any finite N . Favoring small
norm interpolating predictors turns out to be a powerful inductive bias on MNIST and other real
and synthetic data sets [4]. For noiseless data, we make this claim mathematically precise in
Appendix A.

Additional empirical evidence for the same double descent behavior using other data sets is
presented in Appendix C.1. For instance, we demonstrate double descent for rectified linear unit
(ReLU) random feature models, a class of ReLU neural networks with a setting similar to that of
RFF. The inductive bias corresponding to the larger number of features can be readily observed
in a one-dimensional example in Figure 3. Although the fitted function is non-smooth (piecewise
linear) for any number of Random ReLU features, it appears smoother—with smaller norm—as
the number of features is increased.

Finally, in Appendix C.4, we also describe a simple synthetic model, which can be regarded as
a one-dimensional version of the RFF model, where we observe the same double descent behavior.

Neural networks and backpropagation. In general multilayer neural networks (beyond RFF
or ReLU random feature models), a learning algorithm will tune all of the weights to fit the training
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Figure 5: Two interpolating solutions that are linear functions of basis expansions of R. The interpolator
that uses 40 features is a much worse and less smooth fit than the one that uses 4000 features. Both live
within the same RKHS, but the 4000 feature interpolator has a lower function norm. Figure reproduced
from [Belkin et al., 2019].

It is worth emphasizing that this behaviour hinges on the fact that we use gradient descent to optimize
our models. If we were instead to use some other optimization algorithm that was not implicitly biased
towards minimum norm solutions, we instead might choose very poor interpolating functions, and thus
we’d be more likely to see the classical bias-variance tradeoff as p → ∞. In other words, the implicit bias
of gradient descent allows us to achieve good generalization in the overparameterized regime.
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There is still one open question: though larger p is better once we are in the overparamterized/interpolation
regime, why does the overparamterized regime sometimes produce lower test error than the underparam-
terized regime? Can we characterize when overparameterization is likely to be beneficial? We will address
this question in a future lecture.
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