Lecture 03: Implicit Bias of (Stochastic) Gradient Descent, Double
Descent
GEOFF PLEISS

Back in the first lecture, we discussed the “classical” risk bound for an ERM-learned model f € H:

R () = R(f) < O (Veap(H)/n) . Remp(F) ~minR(f) < O (v/eap(#)/n)
where cap(H) is some notion of capacity of the hypothesis space H. If H is too restrictive of a hypothesis
class, then minycy, R(f) will be too small; conversely if H is too expressive, then cap(H) and thus the gap
between the empirical and true risk will be too large. From the perspective of the bias-variance tradeoff, the
former case is indicative of high bias (underfitting) and the latter is indicative of high variance (overfitting).
Both scenarios result in poor generalization, as depicted in this toy diagram below:
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Figure 1: The classical bias-variance tradeoff. Reproduced from [Belkin et al.| 2019].

If we consider neural networks with d parameters, increasing p will increase the capacity of the hypothesis
class (as measured by any standard notion). We would thus expect large neural networks, which have
many more parameters p than training data points n, to be in the extremely high variance regime where
we are overfitting like crazy. Instead, something weird happens as we vary p:
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Figure 2: Training and test loss for a 2-layer neural network trained on MNIST as a function of p (the
number of learnable parameters). Reproduced from [Belkin et al., [2019].

On the left side of the dashed line, the training and test error seem to follow the classical bias-variance
tradeoff we see in Fig. However, passed the dashed line the test error decreases as we increase p! It



appears that we can increase p to infinity and somehow we would still get better generalization than what
we would have achieved on the left side of the dashed line. Moreover, we are obtaining this decrease in
test error even though we're in the regime where the model (nearly) interpolates the training data—i.e.
it has (nearly) zero training error.

This double descent curve, first characterized by |Belkin et al. [2019], is not unique to neural networks.
We can reproduce it in linear regression.
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Figure 3: Training and test loss for a linear regression model trained on a basis expansion of some data
as a function of p (the number of basis functions). These linear regressors are trained on a n = 10,000 set
of training data. Reproduced from [Belkin et al., 2019).

Fig. [3| depicts the exact same test/train error curves for a linear regression model trained without any
regularization. We are regressing on a basis expansion of some data, and as we move along the x axis we
add more basis functions that represent our data. The number of parameters in p—equal to the number
of basis functions we have in our representation. Moreover, the dashed-line inflection point perfectly
corresponds with the point where n = p.

Why does this double descent phenomenon occur? Beyond the dashed line we have more than enough
capacity to perfectly fit the training data, and—without regularization—we are not specifying which of the
infinitely many interpolating models we should choose. The answer is subtle but profound. Even though
the capacity of the neural network/linear regressor grows as p increases, the optimization algorithm we use
happens to concentrate us on a magical solution with good generalization properties.

1) Overparameterized Ridgeless Linear Regression Has Infinitely Many Solutions

Consider ridge regression in the p > n setting (where we ignore the 1/n factor in the loss):
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This optimization problem is strictly convex and so has a unique global minimum that can be found with
(stochastic) gradient descent. It also happens to have a closed form solution, which can be found by setting



the gradient to zero and solving analytically:
-1
0; = (XTX + AI) XTy
-1
' (XXT + AI) y. (1)
What now happens in the ridgeless case, where instead we are just solving ming 1| X6 — y||37 If p > n
and X is full rank, there are now infinitely many 6 that perfectly fit the data, achieving the minimum loss

of zero. This optimization problem is still convex, but it is no longer strictly convex. The solution that we
arrive at will depend on the optimization algorithm.

2) The Minimum Norm Solution

Imagine we have an infinitesimal amount of regularization. By Eq. , the (nearly-)ridgeless regressor will
arrive at the solution

-1
0; = lim 07 = X ' (XXT) y.
A—0

It can easily be seen that this solution (nearly) interpolates the data. There is something very special
about this solution: it is the minimum norm solution that interpolates the data. That is:

6, = arg min |63 2)
X0=y

Using the functional perspective we developed last lecture, if H is the RKHS of linear functions of «, then

f(@) =270 = argminl| [, L= {] €M Sl = yi Vi€ ). (3)

While we could prove the minimum norm nature of 8; from the Eq. perspective, we will prove it from

the Eq. perspective to generalize to arbitrary RKHS.

Proof. Let H be some RKHS with associated kernel k(z, ). Given the training set {(x;,v;)};—, we will
split ‘H into two orthogonal subspaces H,, and H | :

Hy, := span {k(x;, )}, Hi:={geH : (fn,g)u =0 Vf, € Hy,}.

Any function f € ‘H can be decomposed as

EHn EH
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If f €1 (as defined in Eq. (3)), then f(x;) = fn(i) + g(x;) = y; for all i. However, by the reproducing
property of H and the definition of H | :

g(xi) = (9(), k(zi,))u = 0. (k(x;,-) € Hp, definition of H )



Therefore, f,(-) € I. Since fn(-) = > i, aik(x;, ) for some a; € R, we have that

() fn(z1) ki, z1) - k(xi,@a)| |aa
Yn fn(a:n) k(:rn,a:l) k(mnamn) Qo
~—~— ~—~—
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which implies that o = K 'y parameterizes the unique interpolating function in #,,.

Thus, the set of interpolants I is given by

I= @JF&() : f;('):;aik('wi:')
eH, eH.

And since ||f||3, = || 2113, + llg||3,, for all f € I, we obtain the minimum norm solution by setting g = 0.

T

Finally, note that in the linear case where k(x,z’) = ' ', we have:

fi(@) = [k(z, 1) - k(z,z,)] Kly=x <XT (XXT) o y) —xz'6;

O

Why is a minimum norm solution desirable? If we think of || f||% as a measure of the complexity of f, then
the minimum norm interpolator is the “least complex” function that interpolates the data [Belkin et al.,
2018].

Put a different way, imagine we had two training sets: D; and D,. Ideally we would not want the functions
learned from these two training sets to be too different (i.e. we want low variance). Let [y C H and o C H
be the sets of interpolating functions for each training set. By the previous proof, we know that both
subsets are affine subspaces of H. Changing the data will change the “angle” of the subspace. If we are
far away from the origin, even a slight change in “angle” could produce very different functions. However,
the minimum norm solutions in I} and I» are “close” to the origin, and so the “slight difference in angle”
between I; and Iz will not produce very different functions. See Fig. [4] for an illustration.

3) The Implicit Bias of Gradient Descent

Magically, gradient descent will generally find the minimum norm solution for overparameterized linear
regression. It’s worth reflecting on this fact for a moment. We have a problem with infinitely many global
optima, and gradient descent happens to choose the one that is “simplest” [Zhang et al., [2017].

Theorem 1. Consider the ridgeless linear regression problem ming £(0) = ming (| X6 — y||3 with p > n.
If we initialize optimization from any 0©) € collspace{ X T}, and run gradient descent with step size
¥ < Omax(X)? (where omax(X) is the largest singular value of X ), then the limit of the iterates is the
minimum norm solution 6.

Proof. Let USV T = X be the singular value decomposition of X, with U, X € R™" and V € RP*",
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Figure 4: The sets of interpolating functions I; and Iy for two different training datasets D; and Dy are
affine subspaces of #. The minimum norm solutions 8} and 62 are “close” to the origin, and so the “slight
difference in angle” between I; and Is will not produce very different functions.

Since ) ¢ collspace{ X T}, we have 8y = V 3y for some By € R”. Now assume that it also holds that
0 = V31 for some B4 € R™. Gradient descent performs the iteration
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and so 80D can also be written as V80D for some B0+ € R™. We can thus rewrite the update rule in
the projection onto collspace{X ' }:

A simple induction will show that this recursion admits the closed form:
' A i—1 .
BY = (I -~4x%)' O + Z (I —~v%2)’ yzUy.
j=1

Note that—by the assumption on y—the matrix I — X2 is positive definite with eigenvalues strictly less
than 1. As i — oo, the matrix (I — 722)1 thus converges to zero and the summation becomes the Taylor
series for a matrix inverse:

— j 11
lim I3 = (I—-(I-~%?%)) =-x72

ST = (1-(1-3) " =

1—00 <
Jj=1

Thus, lim;_,. 3% = >~ Uy, and so

X —1
lim 89 = V- Uy = VSU U S Uy = X (XXT) y =0
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Note that stochastic gradient descent also converges to the minimum norm solution, even if gradient descent
is initialized outsized the column space of X. However the proof is much more complicated. We refer to
this minimum-norm-seeking behaviour as the implicit bias of (stochastic) gradient descent.

4) Putting it All Together

We now have a clearer picture of what’s going on with double descent, at least in the case of ridgeless linear
regression. Let’s re-examine Fig. [3] The left side of the dotted line represents the underparameterized
regime where p < n and linear regression does not interpolate data. In this regime the test error follows a
classical bias-variance tradeoff: increasing the number of parameters decreases bias but increases variance,
resulting in an initial decline in test error followed by an increase as p — n.

Now consider the point on the right where p = 60,000. Let Hgo,000 be the space of linear functions over
these p = 60,000. All of the linear models represented by this plot are members of Hgoo00. (For example,
the regressor with p = 100 features could be written as a function in Heo,000 where 59,900 of the coefficients
are zero.) All of the models on the right side of the dotted line p > n are thus interpolating functions in
Heo,000. However, the rightmost model is—by definition—the minimum norm interpolator in Heo 000, and
so all other interpolating functions will have a larger norm, and thus more likely to be higher variance.
(See Fig. p| for an illustration.) In the next lecture we will try to formalize this intuition.
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Figure 5: Two interpolating solutions that are linear functions of basis expansions of R. The interpolator
that uses 40 features is a much worse and less smooth fit than the one that uses 4000 features. Both live
within the same RKHS, but the 4000 feature interpolator has a lower function norm. Figure reproduced
from [Belkin et al., 2019].

It is worth emphasizing that this behaviour hinges on the fact that we use gradient descent to optimize
our models. If we were instead to use some other optimization algorithm that was not implicitly biased
towards minimum norm solutions, we instead might choose very poor interpolating functions, and thus
we’d be more likely to see the classical bias-variance tradeoff as p — oco. In other words, the implicit bias
of gradient descent allows us to achieve good generalization in the overparameterized regime.



There is still one open question: though larger p is better once we are in the overparamterized /interpolation
regime, why does the overparamterized regime sometimes produce lower test error than the underparam-
terized regime? Can we characterize when overparameterization is likely to be beneficial? We will address
this question in a future lecture.
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