
Lecture 04: Introduction to High Dimensional Asymptotics and
Random Matrix Theory

Geoff Pleiss

In the previous class, we made an intuitive justification for why the double descent phenomenon occurs in
high-dimensional ridgeless regression. We now proceed with a more formal analysis of risk as a function of
the number of parameters.

Over the next two lectures, we will derive an asymptotic result for ridge regression, a result which will
have implications for neural networks as we will see later in the course. This lecture will focus on a light
introduction to the mathematical tools needed to derive an asymptotic result. The following lecture will
apply these tools to the ridge risk.

1) Ridge Regression Problem Setup

To begin, let θ̂λ be the ridge regression estimator with regularization parameter λ trained on the dataset
D = {(xi, yi)}ni=1, which we vectorize as X ∈ Rn×d and y ∈ Rn. We assume that

x
i.i.d.∼ N (0,Σ), y = θ∗⊤x+ σϵ, ϵ

i.i.d.∼ N (0, 1), (1)

where θ∗ ∈ Rd, Σ ∈ Rd×d, and σ2 > 0 are fixed.1 To simplify analysis, we will assume that the amount of
regularization scales with n, i.e.:

θ̂λ = (X⊤X + nλI)−1X⊤y.

We can write X⊤X as a scaled empirical covariance matrix:

1
nX

⊤X := Σ̂, E[Σ̂] = Σ.

The risk of f̂λ(x) = x⊤θ̂λ can be factorized into bias and variance terms (as on the problem set):

R(θ̂λ) = E
[(

θ∗ − E[θ̂λ]
)⊤

Σ
(
θ∗ − E[θ̂λ]

)]

︸ ︷︷ ︸
B(θ̂λ)=Bias2

+E
[(

θ̂λ − E[θ̂λ]
)⊤

Σ
(
θ̂λ − E[θ̂λ]

)]

︸ ︷︷ ︸
V(θ̂λ)=Var

.

Plugging in θ̂λ = (X⊤X + nλI)−1X⊤(Xθ∗ + σϵ) = (Σ̂ + λI)−1(Σ̂θ∗ + σ
nX

⊤ϵ), where σϵ = y − Xθ∗,
and simplifying, we have

B(θ̂λ) = θ∗⊤E
[(

I − (Σ̂+ λI)−1Σ̂
)
Σ
(
I − (Σ̂+ λI)−1Σ̂

)]
θ∗

= λ2θ∗⊤E
[(

Σ̂+ λI
)−1

Σ
(
Σ̂+ λI

)−1
]
θ∗, (Woodbury on (I − (Σ̂+ λI)−1Σ̂))

V(θ̂λ) =
σ2

n2
E
[
ϵ⊤X

(
Σ̂+ λI

)−1
Σ
(
Σ̂+ λI

)−1
X⊤ϵ

]

=
σ2

n
TrE

[
Σ̂
(
Σ̂+ λI

)−1
Σ
(
Σ̂+ λI

)−1
]
. (independence of X, ϵ, cyclic prop. of Tr)

1Technically, we only assume that x and ϵ are sampled from sub-Gaussian distributions with the moments given in
Eq. (1).
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2) The Need for High Dimensional Asymptotics and Random Matrix Theory

Unfortunately, these expressions are about as simple as we can make them in closed form. Both B(θ̂λ) and
V(θ̂λ) are expectations of some complex function of the random matrix Σ̂, and the only functions we can
compute in closed form are:

1. E[Σ̂] = Σ and

2. E[(Σ̂)−1] = ( 1
n−d−1)Σ

−1, if n > d+ 1 and assuming X is Gaussian.

As in most of statistics, we can assume that some “nice simplifying structure” emerges that simplifies
these expressions when the problems “get really large.” However, we need to be VERY careful about what
we mean by “get really large.” If we simply take n → ∞, then Σ̂ → Σ and our bias and variance both
disappear as λ → 0. This analysis may be appropriate if we’re trying to model linear regression with
n ≫ d, but it’s going to be a horrible model for problem where n ≈ d or d > n.

The correct framework for asymptotically analyzing these problems requires a conceptual leap. We will
examine what happens when n, d → ∞ simultaneously. In other words, we will assume that d grows linearly
with n, i.e. d = γn for some fixed γ > 0, and then we will take n (and d) → ∞. This limit is known as the
high-dimensional asymptotic regime and analyzing it requires tools from random matrix theory.

3) Warm-Up: The Marchenko-Pastur Distribution for Isotropic Data

Imagine for a second that Σ = I. Then

V(θ̂λ) = σ2TrE
[
Σ̂(Σ̂+ λI)−2

]
= σ2

d∑

i=1

E
[

ŝi
(ŝi + λ)2

]
, (2)

where ŝi are the eigenvalues of Σ̂. Thus, understanding V(θ̂λ) as n, d → ∞ requires understanding what
happens to the ŝi as n, d → ∞. We will accomplish this understanding by viewing the summation over
eigenvalues through a probabilistic lens.

If we define F̂ (·) as the empirical distribution over eigenvalues

F̂ (s) =
1

d

d∑

i=1

1[s = ŝi],

then we can rewrite Eq. (2) as an expectation:

V(θ̂λ) =
σ2

d

∫
s

(s+ λ)2
dF̂ (s).

Just as the central limit theorem tells us that empirical distributions of sums converge to normal dis-
tributions, the Marchenko-Pastur theorem tells us that the empirical distribution of eigenvalues also
converge to a deterministic distribution.

Theorem 1 (Marchenko and Pastur [1967]). Let X ∈ Rn×d have i.i.d. sub-Gaussian entries with mean 0
and variance 1. Assuming the ratio γ = d/n ∈ (0, 1] is fixed, the empirical distribution of eigenvalues F̂ (s)
of Σ̂ = 1

nX
⊤X converges (in distribution) to the Marchenko-Pastur distribution F (s) as n, d → ∞:

lim
n,d→∞

F̂ (s) = F (s),
dF (s)

ds
=

{
1

2πγs

√
(s+ − s)(s− s2−) s ∈ [s−, s+],

0 otherwise.
(3)

where s± = (1±√
γ)2.
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Note that we can arrive at a density for eigenvalues for the γ > 1 (i.e. d < n) by recognizing that the
non-zero eigenvalues of X⊤X are the same as the non-zero eigenvalues of XX⊤.

It may be strange to think about a continuous distribution over eigenvalues of a matrix! To gain an
intuitive understanding, consider a histogram of eigenvalues of 1

nX
⊤X. For large n, d, this histogram can

be smoothed out with the Marchenko-Pastur density. See Fig. 1 for an illustration.

Several remarks are in order. First, the object vF defined in (12) is called the companion Stieltjes trans-
form, and is actually quite a natural object. Though the relationship in (12) may look obscure, you can
just think of it through the lens of the following fact: the companion Stieltjes transform of the spectral
distribution of XTX/n is the name that we give to the Stieltjes transform of the spectral distribution of
XXT/d, that is,

vF
XTX/n

= mF
XXT/d

.

Second, the equation in (13), which is sometimes called the Silverstein equation, is not generally solvable
in closed-form (for general H). However, in special cases it is. For example, in the isotropic case ⌃ = I,
whose spectral distribution F⌃ = �1 is a point mass at 1, we have of course H = �1. In this case, equation
(13) is explicitly solveable, and the limiting distribution F in Theorem 1 admits an explicit form as well,
which we call the Marchenko-Pastur law, or MP law. For �  1, this law is supported on an interval [a, b],
where a = (1 �p

�)2 and b = (1 +
p
�)2, and it can be defined by its density

dF (s)

ds
=

1

2⇡�s

p
(b � s)(s � a). (14)

For � > 1, the Marchenko-Pastur law is just as above but has an additional point mass of probability 1�1/�
at the origin s = 0. See Figure 1 for a visualization.
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Figure 1: Empirical verification of the MP theorem when n = 2000, d = 1000. The left panel shows
the empirical distribution of eigenvalues of XTX/n when it has standard Gaussian entries, and the right
panel shows the same but when it has standardized Bernoulli entries. The black curve in each panel is the
density of the MP law.

Third, the Marchenko-Pastur theorem displays a remarkable phenomenon called universality : no matter
the distribution of the elements of Z that give rise to our sample covariance matrix ⌃̂ = XTX/n (recall
the relationship X = Z⌃1/2), we get the same limit F for the spectral distribution of ⌃̂. This limit only
depends on � and H. So for example, in the isotropic case, we learn that if we populate the entries of X
with i.i.d. standardized (zero mean, unit variance) random variables, whether they be Gaussian, Bernoulli,
Poisson, t, etc., and plot a histogram of the eigenvalues of XTX/n for large n, then it is “very likely” that
they will look like they follow (14). See again Figure 1.

Fourth, and last, it is worth emphasizing that the distribution F from Theorem 1 is the almost sure limit
of eigenvalues of ⌃̂ = XTX/n. Interpreting this correctly can sometimes be challenging for people learning
this material for the first time. Let us be clear about what it does not say: the result does not imply that
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Figure 1: Histogram of eigenvalues of 1
nX

⊤X for n = 2000, d = 1000, when the entries of X are
drawn i.i.d. from a Gaussian distribution (left) versus a Bernoulli distribution (right) with zero mean and
unit variance. The values of the histogram roughly correspond to the Marchenko-Pastur density. (Figure
reproduced from Tibshirani [2023].)

Therefore, the variance for isotropic ridge regression can be approximated by its high-dimensional asymp-
totic limit:

V(θ̂λ) =
σ2

d

∫
s

(s+ λ)2
dF̂ (s) ≈ σ2

d

∫
s

(s+ λ)2
dF (s)

ds
ds,

which is now an analytic one-dimensional integral that we can numerically solve!

3.1 Gaussian Universality

Notably, from Fig. 1 we see that the distribution of eigenvalues doesn’t really depend on the distribution
of the entries of X. The left and right histograms, corresponding to Gaussian and Bernoulli entries
(respectively) for Z, are nearly identical. This universality is a key feature of random matrix theory: in
the high-dimensional asymptotic limit, the properties of a random matrix often only depends on its first
and second moments and not on the specific distribution of the entries. Therefore, we can often analyze
the behaviour of random matrices with Gaussian entries without much loss of generality.
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4) A Hand-Wavy Derivation of the Marchenko-Pastur Theorem with the Stieltjes
Transform

How do we arrive at the Marchenko-Pastur distribution for isotropic data? We will need to introduce
a concept from probability known as the Stieltjes transform. The Stieltjes transform of a symmetric
matrix A is a R → R function defined as

mA(−λ) = 1
d Tr

(
(A+ λI)−1

)
, λ > 0, A ∈ Rd×d.

More generally, the Stieltjes transform of a probability distribution F (s) is defined asmF (−λ) =
∫

1
s+λdF (s),

and so the Stieltjes transform of a matrix is just the Stieltjes transform of its empirical eigenvalue distribu-
tion. Like characteristic functions, Stieltjes transforms are an alternative characterization of a probability
measure.2 Moreover, convergence in Stieltjes transform implies convergence in distribution—i.e. given a
sequence of probability distributions Fn(s) and some limiting distribution F (s):

mFn(−λ) → mF (−λ) ⇐⇒ Fn(s)
d→ F (s).

If we assume that there is limiting matrix A so that, for all λ > 0 and “most” B ∈ Rd×d,

1
d Tr

(
B

(
Σ̂+ λI

)−1
)

a.s.−→ 1
d Tr

(
B (A+ λI)−1

)
, (4)

(i.e. mΣ̂(−λ) → mA(−λ)), then it should also be true that, for all i ∈ [1, n],

1
d Tr

(
B

((
Σ̂+ λI

)
− 1

nxix
⊤
i

)−1
)

−→ 1
d Tr

(
B (A+ λI)−1

)
, (5)

i.e. that mΣ̂(−λ) → mA(−λ) even if we removed one xi from the empirical covariance matrix, since each

data point contributes infinitesimally to Σ̂ as n, d → ∞. Following this argument3, coupled with copious
amounts of measure theory, the fact that both Eqs. (4) and (5) hold implies that limn,d→∞mΣ̂(−λ) must
adhere to the self-consistency equation:

1
d Tr

(
Σ̂
(
Σ̂+ λI

)−1
)

a.s.−→ 1
d Tr

(
Σ
(
Σ+ κ(λ)I

)−1
)
, 1/κ(λ) := lim

n,d→∞
1
n Tr

((
1
nXX⊤ + λI

)−1
)
, (6)

where we recognize 1
n Tr(( 1nXX⊤ + λI)−1) as the Steiltjes transform of the empirical distribution of the

spectrum of 1
nXX⊤.

Aside. It is worth thinking about what limd→∞
1
d Tr(Σ(Σ + λI)−1) even means. Σ ∈ Rd×d is a

fixed matrix, so what does it to consider a limit over d? There are two points worth considering:
• Rigorously defining what limd→∞

1
d Tr(Σ(Σ+λI)−1) means depends on the particular problem

setup. Most of the “work” in theory papers using random matrix theory involves setting up
a mathematically valid interpretation Eq. (6). For the purposes of this course, we can just
assume the hand-wavy interpretation that 1

d Tr(Σ(Σ+λI)−1) ≈ 1
d Tr(Σ̂(Σ̂+λI)−1) when n, d

are “sufficiently large.”

• As d → ∞ and Σ becomes infinitely large, we can go back to our notion of kernels. If
Σ = E[xx⊤], then k(x,x′) = limd→∞ x⊤x′ remains valid and the spectrum of k(·, ·) matches
the limiting spectrum of Σ.

2To gain intuition for why the Steiltjes transform characterizes a probability measure, note that the Taylor expansion
suggests that Es[1/(s− λ)] = − 1

λ

∑∞
j=1 Es[(s/λ)

j ] and thus the Steiltjes transform determines the distributions’ moments.
3A hand-wavy version of this argument can be shown by applying the Woodbury formula to ((Σ̂ + λI) − 1

n
xix

⊤
i )

−1 and

recognizing that x⊤
i Bxi ≈ TrB for a matrix B that is independent of xi. See [Pedregosa et al., 2021, Part 2] or [Simon et al.,

2023, Appx. I] for a simple introduction to the argument.
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Using the Woodbury formula, the cyclic property of the trace, and rewriting Σ̂ = 1
nX

⊤X we have that

1
d

[
Tr(Σ̂(Σ̂+ λI)−1)

]
= 1

d

[
Tr(X(X⊤X + nλI)−1X⊤)

]
= 1

d

[
Tr(In×n)− λTr( 1nXX⊤ + λI)

]

= n
d

[
1− λ 1

n Tr( 1nXX⊤ + λI)
]

a.s.−→ γ [1− λ/κ(λ)] .

Thus Eq. (6) can be rearranged to be written as

γ
1

d
Tr

(
Σ (Σ+ κ(λ)I)−1

)

︸ ︷︷ ︸
1
n

∑d
i=1

si
si+κ(λ)

+
λ

κ(λ)
= 1, (7)

which is known as the Silverstein equation [Silverstein, 1995]. In the deep learning literature, this
equation is often referred to as the implicit regularization equation [Jacot et al., 2020] for reasons that we
will see in next lecture.

We now have a recipe to derive the limiting spectrum of Σ̂:

1. Given a Σ and a γ, solve for the κ(λ) function that satisfies Eq. (7).

2. Recognizing from Eq. (6) that 1/κ(λ) is the limiting Steiltjes transform of the spectrum of 1
nXX⊤,

and that limiting Steiltjes transformations characterize limiting distributions, find the distribution
F (s) with a Steiltjes transform that matches 1/κ(λ).

3. F (s) is the limiting distribution of the eigenvalues of 1
nXX⊤, which is also the limiting distribution

of the non-zero eigenvalues of 1
nX

⊤X = Σ̂.

When Σ = I, κ(λ) in Eq. (7) admits a closed-form analytic solution, where 1/κ(λ) is exactly equal to the
Steiltjes transformation of the Marchenko-Pastur distribution given in Eq. (3).

5) Strategy for Analyzing High-Dimensional Ridge Risk: Deterministic Equivalents

Unfortuantely, the recipe above will only work in very special cases, since most Σ ̸= I don’t afford closed-
form solutions to κ(λ) in Eq. (7). Luckily, for our purposes, we won’t need to actually solve for the limiting
spectrum of Σ̂; we only care about specific reductions of the limiting spectrum. Recall that for the variance
we need to compute Tr(Σ̂(Σ̂+λI)−1Σ(Σ̂+λI)−1). This computation does not require knowing the exact
eigenvalues of Σ̂, but instead requires knowing the summation (trace) of some function of the eigenvalues.

As a starting point, we know an asymptotic limit of the reduction Tr(Σ̂(Σ̂ + λI)−1); it is approximately
equal to Tr(Σ(Σ+ κ(λ)I)−1). By adding and subtracting I from both sides of Eq. (6), we have that

λTr
(
Σ̂+ λI

)−1
≈ κ(λ) Tr

(
Σ+ κ(λ)I

)−1
.

More rigorously, we have that

1

d

[
λTr

(
B
(
Σ̂+ λI

)−1
)
− κ(λ) Tr

(
B
(
Σ+ κ(λ)I

)−1
)]

a.s.−→ 0, (8)

for any B ∈ Rd×d under certain regularity conditions [Rubio and Mestre, 2011]. We will denote this
asymptotic convergence by the symbol

λ
(
Σ̂+ λI

)−1
≍ κ(λ)

(
Σ+ κ(λ)I

)−1
⇐⇒ Eq. (8) holds for all “regular” B ∈ Rd×d.
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Eq. (8) gives us a powerful mechanism for analyzing equations involving random matrices. Every time
we come across a term that looks like λTr(Σ(Σ̂+ λI)−1), we can “swap it out”4 with its deterministic
equivalent κ(λ) Tr(Σ(Σ + κ(λ)I)−1), which—using Eq. (7)—is equal to (κ(λ)d/γ)(1 − λ/κ(λ)). Once
we have arrived at a final expression that involves only deterministic quantities, we can then think about
bounding (or numerically solving) for κ(λ).

We will apply this strategy to the high-dimensional ridge risk in the next lecture.
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