Lecture 05: Risk of Overparameterized Ridge Regression, Effective
Regularization
GEOFF PLEISS

Recall that our goal is to find a (high-dimensional) asymptotic expression for the risk of ridge regression.
The previous lecture introduced tools from random matrix theory which we now use to analyze the risk.

1) The Risk of Ridge Regression

Using the same notation as the previous lecture, recall that the risk of ridge regression decomposes into
squared bias and variance terms:
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And recall that the tools of random matrix theory gave us deterministic equivalents for expressions of
the form Tr(B(X + AI)~!) for all B satisfying certain regularity conditions:

AT (BE+AD™) ~ 5() T (B + 5N ™) (2)
where ~ denotes some notion of convergence as n,d — oo (which, for the purposes of this class, we will

not rigorously define), and () is the solution to the self-consistency/Silverstein equation:
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Note that x(\) also is the limiting Steiltjes transform of %XXT when v =d/n > 1, i.e.

r) = Tim ATe((AXXT4AD)T)  whend/n> 1.
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2) Applying the Deterministic Equivalent

Note that the deterministic equivalent only applies to terms of the form Tr(32(3 + AI)™!), and not other
terms like Tr(X(X + M) ~!2(2 + AI)~!)—what we see in the variance expression. So we have to massage
the terms in Eq. a bit.

2.1 Variance

A key insight from Hastie et al.| [2022] is to use the following identity:
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where now the inside of the derivative can be replaced with its deterministic equivalent (after CAREFULLY
checking that derivative and limit can be interchangedED
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Plugging in the deterministic equivalents from Eq. (where we go on faith that we can interchange limits
and derivatives), and recalling Eq. , we have
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2.2 Bias

We can play a similar trick with the bias term, but it’s a little more complicated:

1. we want the A\? term in the bias to “disappear” (i.e. to be “transformed” into a k()) as part of the
deterministic equivalent) and

2. we have 8*" terms in the expression

If we introduce an auxiliary variable p so that
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then the term inside the derivative can be massaged into a form that admits a deterministic equivalent [
ultimately yielding the following approximation:
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!See [Hastie et al.| [2022] for all the gory technical details.
2See [Hastie et al., [2022] for gory details or |Tibshirani, 2023] for a more palatable introduction.



Letting QSQ" be the eigendecomposition of 3, let v = S1/2QT 0* be the coordinates of 8* in the eigenbasis
of X (scaled by the square root of the eigenvalues). Then we can rewrite ¢? as
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3) Interpretation

Putting these results together, we have that
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While we have thus far assumed that we are in the ridge scenario (A > 0), these results also hold in the
ridgeless case (i.e. as we take A — 0)| Importantly, A — 0 does not imply that #()\) — 0.

Simon et al. [2023] offers an semantically meaningful interpretations of all these terms.

o v; is i eigenmode coefficient of 6*; i.e. the portion of the true signal that aligns with the 4"
eigenvector of 3.

L; = (s1)/(si + K(N\)) is the learnability of the i*" eigenmode. It corresponds to the (square root of)
the percentage of “signal” in the i*" eigenmode that can be learned by the model.

— Note that, Zle L; = Tr(Z(Z + x(\)™1). Thus, by Eq. , Zle L; < n, with equality in the
ridgeless case.

— In other words, the total learnability of all d eigenmodes is fized at n. We cannot hope to learn
all eigenmodes completely when n < d.

The signal residual represents the true signal not learned by the ridge parameters.

The noise fit term represents the training response noise that “ends up in” the ridge parameters.

Finally, & is the overfitting coefficient. It is a multiplicative penalty that increases the test error.

— By differentiating the Silverstein equation in Eq. with respect to A on both sides:
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and rearranging terms we find that
dr(A n
£ = d(A ) _ — (6)
n— i L
— We have that & — 1 as k() — oo (and thus £; — 0) and & — oo as k(A) — 0 (and thus

ﬁi — 1).

3Showing that these results hold in the ridgeless case requires a very careful analysis of the limits, which we will ignore for
the purposes of this course.




3.1 Implicit Regularization

We will refer to k() as the implicit regularization coefficient. Much as explicit regularization reduces
overfitting/variance at the cost of increased bias, larger x(\) will reduce the overfitting coefficient at the
cost of increased signal residual.

k(A) only appears in Eq. through the eigenmode learnabilities £; and the only two terms containing
L; are the overfitting coefficient & and the “signal residual” Ele(l — £;)?v;. To understand how r(\)
impacts both of these terms, note that 0 < £; < 1 when k() > 0 and thus

d 2 d
Yoic1 £i <X Li <n.

where the first inequality is strict unless £; = 1. If k(\) & 0, £? will go towards 1 and—in the ridgeless
case—Y_ L2 — n. The signal residual will be approximately zero but the overfitting coefficient will diverge.
Conversely if k() is very large, £ will shrink towards 0 and " £? < n. The signal residual will be large
but the overfitting coefficient will be nearly 1.

3.2 How v = d/n Affects the Implicit Regularization

In the next lecture we will gain a better sense for how k(\) is affected by the spectrum A,...,\;s. For
now, let’s consider some basic rules that depend on . Assume that we are in the ridgeless case, so that

Sy si/(si + K(0) = n.

e In the overparameterized regime (d > n, v > 1), there are d terms in the summation that must add
up to n. Therefore, each term in the summation must be < 1 and so k(0) > 0. As v = d/n increases,
each term must contribute less to the overall sum, and thus x(0) must increase.

e When n = d, each term in the summation must be exactly 1, implying that x(0) = 0. As discussed
above, the overfitting coefficient diverges, resulting in infinite risk!

These results explain the double descent curve we saw earlier, but they also hint at a potentially troubling
scenario. Let’s say that we are working in an RKHS—i.e. with d = oo, and we are training an (overpa-
rameterized) ridgeless regressor with n data points. As n — oo, we have v — 1, decreasing our effective
regularization. However, as v — 1, we have that x(0) = 0 which potentially brings infinite risk. With
careful analysis of the limits, we will show that—surprisingly—we often avoid this catastrophic behaviour.
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