
Lecture 06: Benign Overfitting
Geoff Pleiss

In the last lecture we saw that risk of ridgeless linear regression when γ = d/n ≥ 1 is given by

R(θ̂0) ≈

bias2︷ ︸︸ ︷
E0

(∑
i (1− Li)

2 v2i

)
︸ ︷︷ ︸

signal residual

+

variance︷ ︸︸ ︷
(E0 − 1) σ2︸︷︷︸

noise fit

, E0 :=
n

n−∑
i L2

i︸ ︷︷ ︸
overfit. coeff.

. (1)

Given the eigendecomposition QSQ⊤ = E[xx⊤], the quantities vi are given by the equation θ∗ =∑d
i=1 vis

−1/2
i qi, and the Li are the eigenvalues si weighted by the implicit reguarlization parameter κ.

Li =
si

si + λ
, κ :

[
d∑

i=1

Li =
d∑

i=1

si
si + κ

= n

]
(2)

We went through the high level steps of a high-dimensional asymptotic proof, where ≈ signified that the
difference between the two quantities goes to zero almost surely as n, d → ∞, (assuming that there is some
sequence of Σd that converge in Steiltjes transform). However, Eq. (1) holds for various other notions of
≈, including high probability bounds for finite n and d [Bartlett et al., 2020].

Though the implicit regularization parameter is implicitly defined by the self-consistency equation (2), we
saw that κ > 0 when γ = d/n > 1 and κ = 0 when γ = 1. Moreover,

• E0 ≥ 1 when γ ≥ 1, increasing as γ increases.

• E0 → ∞ as κ → 0, suggesting infinite risk at the interpolation threshold.

1) Can Interpolation Be Consistent?

Eq. (1) helps to explain the double descent curve (we gain “implicit regularization” with increased over-
parameterization), but it has troubling implications for the consistency of interpolating models.

Consider an RKHS H with a kernel k(x,x′). As we discussed in a previous lecture, we can think of
kernel regression as linear regression with infinitly many features, where the features come from (a linear
combination of) the eigenepansion k(x,x′) =

∑∞
i=1 siqi(x)qi(x

′). If the true data generating function
f∗(x) lives in H (i.e. if y = f∗(x) + ϵ, ϵ ∼ N (0, σ2)) then we would hope that any learning algorithm
would produce a consistent estimator f̂ where f̂ → f∗(x) (almost surely) as n → ∞.

If f̂ were the ridgeless kernel regressor (read: the ridgeless linear regressor with infinitly many features), its
risk would be approximated by Eq. (1) with d = ∞.1 then we would hope that R(f̂) → R(f∗) as n → ∞.
However, it is not immediately obvious how to achieve consistency with Eq. (1).

In order for R(f̂) → R(f∗) = 0 as n → ∞, we would need both the bias and variance terms to go to zero.
It’s easy to see that the bias term vanishes, even without the asymptotic form of Eq. (1). Imagine for

1 We have to be careful with what we mean by “approximated” here. Recall that we derived Eq. (1) by taking n, d → ∞
simultaneously, so it doesn’t make sense to set one of them to infinity while keeping the other finite. Nevertheless, alternative
analyses of R(θ̂0) that set d → ∞ and keeps n finite arrive at the same equation but where the ≈ has different meaning.
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starters that d > n is finite. Using the notation from previous lectures, the bias term of overparameterized
ridgeless regression is equal to

B(θ̂0) = E
[(

x⊤
a︷ ︸︸ ︷(

θ∗ − E[θ̂0]
))2]

= a⊤Σa,

and recalling that

E[θ̂0] = E[X⊤(XX⊤)−1

Xθ︷ ︸︸ ︷
E[y | X]],

we have that a = E[I−X⊤(XX⊤)−1X]θ∗. The matrix inside the expectation is an orthogonal projection
onto the nullspace of X. As n → d, the nullspace vanishes and so a → 0. This same logic holds if d = ∞
(i.e. if we are working with kernels); the bias term will vanish as n → ∞.

The variance term is more complicated. In order for the variance to vanish, we would need E0 → 1 as
n → ∞. However, κ = 0 when n = d in our high-dimensional asymptotic analysis, and so E0 = ∞ when
κ = 0! Indeed, this equation depicts why statisticians historically thought that interpolating estimators
should be avoided at all cost. In practice, it is not challenging to construct a kernel interpolator with this
diverging risk. Fig. 1 shows a scenarios (right) where E0 → ∞ as n → ∞; i.e. adding more data actually
makes the generalization worse!
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Figure 4: Kernel regression can exhibit all three �tting regimes with proper choice of ridge parameter and
kernel. Plots show learning curves for KR with data {xi} sampled uniformly from the unit sphere Sd�1, trained
with pure noise target labels yi ⇠ N (0, 1). Test MSE is computed with respect to a clean test set. (a) KR with a
Gaussian kernel and nonzero ridge is asymptotically benign. A ridge value of � = 0.1 was used. (b) Ridgeless KR
with a Laplace kernel exhibits tempered over�tting. (c) Ridgeless KR with a Gaussian kernel exhibits catastrophic
over�tting.

Comparison with Bartlett et al. [2020]. Our setting is essentially the same as the overparameterized linear
regression setup studied by Bartlett et al. [2020]: KR is equivalent to linear regression in eigenfeature space, and our
kernel eigenvalues are equivalent to their covariance matrix eigenvalues. Our spectral condition for benignness in
Theorem 3.1a is precisely that of their Theorem 6.1, and we include it for completeness. Their Theorem 6.1 notes that
powerlaw decays with ↵ > 1 are not benign; here we �nd that they are in fact tempered.

4 Experiments
Having demonstrated the three types of �tting theoretically in KR, we now present a series of experimental results
illustrating these regimes in both KR and deep neural networks (DNNs). We show results on various common datasets
and models to give evidence that these phenomena are not speci�c to our particular theoretical setting, but are widely
relevant across machine learning. First, we empirically verify Theorem 3.1 through simple synthetic experiments
with ridged kernels, and the ridgeless Laplace and Gaussian kernel. We see these three choices of kernels exhibit the
three di�erent regimes of over�tting, exactly as predicted by our theorem. This con�rms both that our theoretical
heuristics (which were nonrigorous in places) are empirically accurate, and that the asymptotic behavior is evident at
realistically large sample sizes.

We then perform similar regression and classi�cation experiments using MLPs, to show that, beyond the kernel
setting, simple DNNs can also exhibit both benign and tempered over�tting — depending on the early-stopping
criteria. We provide full experimental details in Appendix C.

4.1 Experiments on Kernel Regression
In Figure 4, we run KR on the following synthetic data distribution: the inputs x are sampled from the unit sphere
Sd�1, and the targets y are zero-mean Gaussian noise (y ⇠ N (0, 1)). This is an extremely simple regression setting:
we are just trying to learn the constant-0 function under Gaussian observation noise. We run KR with three choices
of kernel: (A) Gaussian kernel with ridge, (B) Laplace kernel without ridge, and (C) Gaussian kernel without ridge.
Figure 4 shows that as we increase the sample size, these three settings exhibit benign, tempered, and catastrophic
behavior. This agrees with the spectral predictions of Theorem 3.115.

Interestingly, Figure 4c shows that increasing input dimension tends to both improve MSE at �xed sample size
n, and increase the “critical” n at which MSE begins to diverge. This suggests that high dimensionality can be a

15Though not reported here, we �nd the ridged Laplace kernel also exhibits benign �tting as expected.
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Figure 1: A depiction of the three limiting scenarios for the risk of kernel interpolators. Left: benign
overfitting: R → 0 as n → ∞. Middle: tempered overfitting: R → c for some 0c < ∞. Right:
catastrophic overfitting: R → ∞. All three scenarios are possible depending on the spectrum of the
kernel function. (Figure reproduced from Mallinar et al. [2022].)

Our only hope for a consistent (or, at the very least, a non-catastrophic) estimator is for κ to decay at a
slower rate than n grows. More specifically, we need the gap between

∑L2
i and

∑Li = n, the two terms in
the denominator of E0 to increase (or at least stay constant) as n → ∞. Surprisingly, we will manage this
rate for for most kernels! In certain scenarios, E0 not only remains finite as n → 0, but also converges to
1 and thus limn→∞R(θ̂0) = 0. The discovery of interpolators that benignly overfit despite memorizing
the noise present in the training data is one of the more surprising statistical findings of the last 5 years
[Bartlett et al., 2020].

2) Strategy and Mathematical Tools

Our derivation will largely follow that of Mallinar et al. [2022], though it is worth noting that their analysis
is non-rigorous (see Footnote 1 for an explanation). Bartlett et al. [2020] provides a more complicated
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analysis that maintains rigor by avoiding asymptotics. Both analyses largely use the same mathematical
idea which we outline below.

The convergence (or divergence) of Eq. (1) will entirely depend on the limiting behaviour of Li. Our
key technique will be to divide the Li into a “head” and a “tail,” bounding the “head” behaviour while
controlling the “tail.” For example, consider the self-consistency equation for kernel ridgeless regression:

∞∑
i=1

Li =
∞∑
i=1

si
si + κ

= n.

If we choose some constant ζ ∈ N, then we can divide this sum into

ζ∑
i=1

si
si + κ︸ ︷︷ ︸
head

+
∑
i>ζ

si
si + κ︸ ︷︷ ︸
tail

= n. (3)

It’s not immediately obvious why this separation is useful. However, assuming that s1 > s2 > . . ., and
noting that si/(si +κ) ≤ 1 and si/(si +κ) < si/κ, we can obtain a simple upper bound on κ that depends
on η: and defining ζ = n(1− η) for some2 η ∈ (0, 1)

n(1−η)∑
i=1

si
si + κ︸ ︷︷ ︸

≤n(1−η)

+
∑

i>n(1−η)

si
si + κ︸ ︷︷ ︸

<
∑

si/κ

= n. =⇒ κ <
1

nη

∑
i>n(1−η)

si︸ ︷︷ ︸
:=cη

. (4)

Thus κ decays at a rate of O(1/n). We can also provide an lower bound:

n =

n(1+η)∑
i=1

si
si + κ︸ ︷︷ ︸

≥
sn(1+η)

sn(1+η)+κ

+
∑

i>n(1+η)

si
si + κ︸ ︷︷ ︸

>0

> n(1 + η)
sn(1+η)

sn(1+η) + κ
=⇒ κ > ηsn(1+η). (5)

In other words, the split in Eq. (3) allows us to compute rates of convergence for various terms in Eq. (1).
We will get even more precise rates once we start considering how fast the si eigenvalues decay and consider
specific values of ζ or η.

3) The Curious Case of Benign Overfitting

Let’s assume that the rate of decay of the eigenvalues si is given by

si = i−1 log−α i (6)

for some α > 0. Note that this is just about the slowest rate of eigenvalue decay that we can have while
still having

∑∞
i=1 si < ∞.3 If we consider ζ = n/ log log n in Eq. (3), then we have

n∑
i=1

L2
i =

n
log logn∑
i=1

s2i
(si + κ)2︸ ︷︷ ︸

≤1

+
∑

i> n
log logn

s2i
(si + κ)2︸ ︷︷ ︸
<
∑

s2i /κ
2

=
n

log logn
+

κ−2
∑

i> n
log logn

1

i2 log2α i


︸ ︷︷ ︸

tail

.

2Mallinar et al. [2022] use γ rather than η for this constant; here we use η to avoid confusion with γ = d/n.
3Note that limα→0

∑∞
i=1 i

−1 log−α i =
∑∞

i=1 1/i = ∞.
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Using the lower bound in Eq. (5) with η = 1 (so that κ ≥ λ2n = (2n)−1 log−α(2n)) in conjunction with
some additional clever bounding, Mallinar et al. [2022, Appx. A] show that the tail in the sum above goes
to zero as n → ∞. Thus,

E0 =
n

n−O
(

n
log logn

) → 1.

Thus the variance term in Eq. (1) goes to zero as n → ∞, and so R(θ̂0) → 0. Magically, we have achieved
the balance of E0 → 1 despite the former blowing up when κ = 0.

3.1 Intuition

How does it happen that κ = 0 when n = d but E0 → 1 when d = ∞ and n → ∞? You should be somewhat
skeptical of this result, since we are applying a limiting analysis to quantities that are asymptotic in nature.
Fortunately Bartlett et al. [2020] provide a more rigorous analysis that avoids asymptotics, deriving instead
results that hold for finite n with high probability. There analysis finds that

V(θ̂0) ≍
k∗n
n

− n

R
(k∗)
n (Σ)

, (7)

where k∗n is a notion of effective dimensionality of the problem4 and R
(k∗)
n (Σ) is a measure of the

effective rank of the tail of the covariance matrix Σ. Intuitively, we can think of k∗n as the number

of “relevant” (high eigenvalue) features there are while R
(k∗)
n (Σ) represents the relative strength of the

“irrelevant” (low eigenvalue) features. Roughly, we can think that the largest k∗n eigenvalues of Σ are
mostly fitting signal and the noise is distributed amongst the remaining smaller eigenvalues. Crucially,
both numbers depend on n—the amount of data we have limits the amount of signal we can learn. With
more data we fit more relevant features, leaving fewer irrelevant features to distribute the noise amongst.

Staring at this equation we see that benign overfitting requires a very delicate balance. We need k∗n ≤
o(n)—i.e. we need the effective dimensionality to be less than the true dimensionality. However, we

also need R
(k∗)
n (Σ) ≥ ω(n)—i.e. we need the relative strength of the “irrelevant” features to become

larger. Intuitively, we want to “spread out the noise” as much as possible over this tail so that it does
not concentrate in any single feature. If the eigenvalues in this tail decay too quickly, then the noise will
concentrate in a few relatively important dimensions increasing the influence of this noise.

Peter Bartlett, the lead author of Bartlett et al. [2020], outlines this intuition very well in a lecture from
NeurIPS 2021 Bartlett [2021].

3.2 Other Mechanisms for Achieving Benign Overfitting

The decay rate of s−1 log−α s that yields benign overfitting is a very slow rate of decay; it is the slowest
rate of decay that still allows for

∑∞
i=1 si < ∞. Unfortunately as we will soon see it is the only rate of

decay for fixed d = ∞ that allows for interpolating benign overfitting.

However, with an infinitessimal amount of ridge regularization, we can also achieve benign overfitting. If

4There is a relation between k∗
n and κ; see [Misiakiewicz and Montanari, 2023, Ch 2.4] for details.
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the amount of ridge λ shrinks with n the bias term will still vanish. Moreover:∑
i

L2
i =

∑
i

s2i
(si + κ(λ))2

<
∑
i

s2i
(si + λ)2

(κ(λ) > λ, from the previous lecture)

=
n1/2∑
i

s2i
(si + λ)2︸ ︷︷ ︸

<1

+
∑

i>n1/2

s2i
(si + λ)2︸ ︷︷ ︸

<
s2
i

λ2

= n1/2 +
∑

i>n1/2

s2i
λ2︸︷︷︸

<s
1/2
n

si
λ2

= n1/2 +
sn1/2

λ2

∑
i>n1/2

si︸ ︷︷ ︸
c

,

where c < ∞ because the eigenvalues are summable. Setting λ =
√
sn1/2 thus allows λ to decay with n in

a way that
∑

i L2
i < o(n) and thus E0 and the variance go to zero.

4) Tempered and Catastrophic Overfitting

Most kernel interpolators however will not be consistent estimators. Using similar techniques as what we
used above, Mallinar et al. [2022] show that

• If the kernel eigenvalues decay at a power law rate of si = i−α for some 1 < α < ∞, then E0 → α.
The bias will disappear, but the variance will converge to (α − 1)σ2. We refer to this non-zero but
non-infinite limiting risk as tempered overfitting. Note that most kernels have spectra that fall in
this category. See Fig. 1 (middle) for a visual depiction of this scenario.

• If the kernel eigenvalues decay exponentially, such as si = i− log i, then E0 → ∞. See Fig. 1 (right)
for a visual depiction of this scenario. This scenario, which is the classic interpolation boogeyman,
requires extremely strong assumptions of smoothness.

5) How Smoothness Affects Overfitting Behaviour

There is a very nice relation between the smoothness implied by the spectral decays and their overfitting
behaviours. Intuitively, if we are interpolating a dataset with an infinite amount of noise, then it is very
likely that we will get two data points with opposite noise profiles near each other. I.e., for a given input x,
as n → ∞ we will likely have the responses θ∗(x−δ)+ ϵ and θ∗(x+δ)− ϵ in the dataset for some δ and ϵ.
If we have to interpolate both of these points with a smooth function (rapidly decaying eigenvalues), there
are lots of constraints on how fast our interpolating function can change. To compensate, our interpolator
will have to have strange wiggles to maintain smoothness. Conversely, if we have slow decaying eigenvalues
(less smoothness), then we can learn a “rough” bump at (x − δ) and (x + δ) to fit the noise while still
learning the overall signal. This intuition is depicted in Fig. 2.

With that, we have finished our study of high-dimensional linear regression. We have learned that it is not
as scary as it sounds; overparameterization adds a surprising implicit regularization effect and we can even
obtain a consistent estimator while interpolating noise! In the next module, we will relate these results to
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Figure 1: As n ! 1, interpolating methods can exhibit three types of over�tting. (A) In benign over�tting, the
predictor asymptotically approaches the ground-truth, Bayes-optimal function. Nadaraya-Watson kernel smoothing
with a singular kernel, shown here, is asymptotically benign. (B) In tempered over�tting, the regime studied in this
work, the predictor approaches a constant test risk greater than the Bayes-optimal risk. Piecewise-linear interpolation
is asymptotically tempered. (C) In catastrophic over�tting, the predictor generalizes arbitrarily poorly. Rank-n
polynomial interpolation is asymptotically catastrophic.

asymptotically benign2. The study of benign over�tting has proven fruitful, leading to rich mathematical insights into
high-dimensional learning3, and benign over�tting is certainly closer to the real behavior of DNNs than catastrophic
over�tting.

That said, it requires only simple experiments to reveal that many standard DNNs do not over�t benignly: when
training on noisy data, DNNs do not diverge catastrophically, but neither do they approach Bayes-optimal risk.
Instead, they converge to a predictor that is neither catastrophic nor optimal but rather somewhere in between,
with error that increases as the noise in the data increases. Figure 2 depicts such an experiment: a ResNet is trained
on a binary variant of CIFAR-10 with varying amounts of training label noise, and with increasing sample size n.
We see from Figure 2 that greater train noise indeed results in greater test error, and this test error persists even
as n grows, converging to a non-zero asymptotic value4. This is unlike “benign over�tting,” which would produce
an asymptotically-optimal predictor at all non-trivial noise levels (depicted in blue in Figure 2). This suggests that,
in the search for a paradigm to understand modern interpolating methods, we should identify and study a regime
intermediate between benign and catastrophic.

1.1 Summary of Contributions
In this work we formally identify an intermediate regime between benign and catastrophic over�tting. We call
this intermediate behavior tempered over�tting because the noise’s harmful e�ect is tempered but still nonzero. We
�nd that both DNNs trained to interpolation and (ridgeless) kernel regression (KR) using certain common kernels
fall into this intermediate regime even as the number of training examples n approaches in�nity, as do common
methods like 1-nearest-neighbors and piecewise-linear interpolation (as in Figure 1b). Our tempered regime completes
the taxonomy of over�tting: essentially any learning procedure is either benign, tempered, or catastrophic in the
asymptotic limit.

We begin in Section 2 with preliminaries, formal de�nitions of the three regimes, and a taxonomy of some common
ML methods according to these regimes. We generally consider an algorithm’s limiting behavior as n ! 1, as in
the study of statistical consistency5. We are more interested in algorithms’ asymptotic test risk than in the fact that
they interpolate, and we consider certain non-interpolating methods as well as interpolating methods. In Section 3,

2As a �rst hint that important practical methods may not be benign (at least in low dimension), note that, in order to be benign, the predicted
function in Figure 1a has to take this spiky shape. On the other hand, very wide and deep neural network may indeed be spiky Radhakrishnan
et al. [2022].

3A partial list of works here include Advani and Saxe [2017], Bahri et al. [2020, 2021], Bartlett et al. [2020, 2021], Belkin et al. [2018a,b, 2019a],
Cao et al. [2022], Chatterji and Long [2021], Chatterji et al. [2021], d’Ascoli et al. [2020], Frei et al. [2022], Goldt et al. [2019], Hastie et al. [2019],
Koehler et al. [2021], Liang and Rakhlin [2018, 2020], Mei and Montanari [2019], Muthukumar et al. [2020], Rakhlin and Zhai [2019], Tsigler and
Bartlett [2020], Zhang et al. [2017, 2021].

4It is well-known and is perhaps unsurprising that interpolating DNNs are harmed by label noise (e.g. Zhang et al. [2017]); our new observation
is that this persists even as n ! 1.

5We note that benign over�tting is statistical consistency with the additional requirement of interpolation.
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Figure 2: A cartoon depiction of how the smoothness of the kernel function affects the overfitting be-
haviour. (Figure reproduced from Mallinar et al. [2022].)

neural networks, using these findings as a first-order approximation for why neural networks fit data so
well.
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