Lecture 06: Benign Overfitting
GEOFF PLEISS

In the last lecture we saw that risk of ridgeless linear regression when v = d/n > 1 is given by
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Given the eigendecomposition QSQ'T = E[wa], the quantities v; are given by the equation 6* =

Z?:l vis;l/ 2qi, and the L£; are the eigenvalues s; weighted by the implicit requarlization parameter k.
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We went through the high level steps of a high-dimensional asymptotic proof, where ~ signified that the
difference between the two quantities goes to zero almost surely as n,d — oo, (assuming that there is some
sequence of Y, that converge in Steiltjes transform). However, Eq. holds for various other notions of
~, including high probability bounds for finite n and d [Bartlett et al., 2020].

Though the implicit regularization parameter is implicitly defined by the self-consistency equation (2)), we
saw that x > 0 when v =d/n > 1 and k = 0 when v = 1. Moreover,

e & > 1 when v > 1, increasing as -y increases.

e & — o0 as k — 0, suggesting infinite risk at the interpolation threshold.

1) Can Interpolation Be Consistent?

Eq. helps to explain the double descent curve (we gain “implicit regularization” with increased over-
parameterization), but it has troubling implications for the consistency of interpolating models.

Consider an RKHS H with a kernel k(x,2’). As we discussed in a previous lecture, we can think of
kernel regression as linear regression with infinitly many features, where the features come from (a linear
combination of) the eigenepansion k(x,z’') = > .2, s;q;(x)g;(x’). If the true data generating function
f*(x) lives in H (ie. if y = f*(x) +¢ € ~ N(0,02%)) then we would hope that any learning algorithm
would produce a consistent estimator f where f — f*(x) (almost surely) as n — oc.

If f were the ridgeless kernel regressor (read: the ridgeless linear regressor with infinitly many features), its

risk would be approximated by Eq. with d = ool'| then we would hope that R(f) — R(f*) as n — oo.
However, it is not immediately obvious how to achieve consistency with Eq. .

N

In order for R(f) — R(f*) = 0 as n — oo, we would need both the bias and variance terms to go to zero.
It’s easy to see that the bias term vanishes, even without the asymptotic form of Eq. . Imagine for

1 'We have to be careful with what we mean by “approximated” here. Recall that we derived Eq. by taking n,d — oo
simultaneously, so it doesn’t make sense to set one of them to infinity while keeping the other finite. Nevertheless, alternative
analyses of R(6o) that set d — oo and keeps n finite arrive at the same equation but where the ~ has different meaning.



starters that d > n is finite. Using the notation from previous lectures, the bias term of overparameterized
ridgeless regression is equal to

B(6o) = E[(27 (0" ~E[6))) | = a"2a,

and recalling that
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we have that @ = E[I — X T (X X ")~ X]6*. The matrix inside the expectation is an orthogonal projection
onto the nullspace of X. As n — d, the nullspace vanishes and so a — 0. This same logic holds if d = oo
(i.e. if we are working with kernels); the bias term will vanish as n — oco.

The variance term is more complicated. In order for the variance to vanish, we would need & — 1 as
n — 0o. However, kK = 0 when n = d in our high-dimensional asymptotic analysis, and so & = oo when
k = 0! Indeed, this equation depicts why statisticians historically thought that interpolating estimators
should be avoided at all cost. In practice, it is not challenging to construct a kernel interpolator with this
diverging risk. Fig. [l| shows a scenarios (right) where & — oo as n — oo; i.e. adding more data actually
makes the generalization worse!
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Figure 1: A depiction of the three limiting scenarios for the risk of kernel interpolators. Left: benign
overfitting: R — 0 as n — oco. Middle: tempered overfitting: R — ¢ for some Oc < co. Right:
catastrophic overfitting: R — oo. All three scenarios are possible depending on the spectrum of the
kernel function. (Figure reproduced from Mallinar et al.|[2022].)

Our only hope for a consistent (or, at the very least, a non-catastrophic) estimator is for x to decay at a
slower rate than n grows. More specifically, we need the gap between E? and > L; = n, the two terms in
the denominator of & to increase (or at least stay constant) as n — oo. Surprisingly, we will manage this
rate for for most kernels! In certain scenarios, & not only remains finite as n — 0, but also converges to
1 and thus lim,,_, R(éo) = 0. The discovery of interpolators that benignly overfit despite memorizing
the noise present in the training data is one of the more surprising statistical findings of the last 5 years
[Bartlett et al., [2020].

2) Strategy and Mathematical Tools

Our derivation will largely follow that of [Mallinar et al.| [2022], though it is worth noting that their analysis
is non-rigorous (see Footnote (1| for an explanation). Bartlett et al. [2020] provides a more complicated



analysis that maintains rigor by avoiding asymptotics. Both analyses largely use the same mathematical
idea which we outline below.

The convergence (or divergence) of Eq. will entirely depend on the limiting behaviour of £;. Our
key technique will be to divide the £; into a “head” and a “tail,” bounding the “head” behaviour while
controlling the “tail.” For example, consider the self-consistency equation for kernel ridgeless regression:
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If we choose some constant ( € N, then we can divide this sum into
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It’s not immediately obvious why this separation is useful. However, assuming that s; > so > ..., and

noting that s;/(s; + k) < 1 and s;/(s; + k) < s;i/k, we can obtain a simple upper bound on x that depends
on 7: and defining ¢ = n(1 —n) for someE] ne(0,1)
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Thus x decays at a rate of O(1/n). We can also provide an lower bound:
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In other words, the split in Eq. allows us to compute rates of convergence for various terms in Eq. .
We will get even more precise rates once we start considering how fast the s; eigenvalues decay and consider
specific values of ¢ or 7.

3) The Curious Case of Benign Overfitting
Let’s assume that the rate of decay of the eigenvalues s; is given by
s; =1 "log i (6)

for some « > 0. Note that this is just about the slowest rate of eigenvalue decay that we can have while
still having 77, s; < ooEI If we consider ¢ = n/loglogn in Eq. , then we have
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“Mallinar et al.| [2022] use « rather than 7 for this constant; here we use 7 to avoid confusion with v = d/n.
*Note that lima—0 » 0,4 "log™ i =32 1/i = o0.



Using the lower bound in Eq. (5) with = 1 (so that kK > g, = (2n) !log™®(2n)) in conjunction with
some additional clever bounding, Mallinar et al.|[[2022, Appx. A] show that the tail in the sum above goes

to zero as n — oco. Thus,
n
50 = — 1.

n
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Thus the variance term in Eq. goes to zero as n — 0o, and so R(ég) — 0. Magically, we have achieved
the balance of & — 1 despite the former blowing up when x = 0.

3.1 Intuition

How does it happen that K = 0 when n = d but & — 1 when d = co and n — c0? You should be somewhat
skeptical of this result, since we are applying a limiting analysis to quantities that are asymptotic in nature.
Fortunately Bartlett et al. [2020] provide a more rigorous analysis that avoids asymptotics, deriving instead
results that hold for finite n with high probability. There analysis finds that

— o (7)

where k; is a notion of effective dimensionality of the proble and R%k*)(z) is a measure of the

effective rank of the tail of the covariance matrix . Intuitively, we can think of £} as the number
of “relevant” (high eigenvalue) features there are while R;k*)(Z) represents the relative strength of the
“irrelevant” (low eigenvalue) features. Roughly, we can think that the largest k) eigenvalues of ¥ are
mostly fitting signal and the noise is distributed amongst the remaining smaller eigenvalues. Crucially,
both numbers depend on n—the amount of data we have limits the amount of signal we can learn. With

more data we fit more relevant features, leaving fewer irrelevant features to distribute the noise amongst.

Staring at this equation we see that benign overfitting requires a very delicate balance. We need k; <
o(n)—i.e. we need the effective dimensionality to be less than the true dimensionality. However, we
also need R%k*)(z) > w(n)—i.e. we need the relative strength of the “irrelevant” features to become
larger. Intuitively, we want to “spread out the noise” as much as possible over this tail so that it does
not concentrate in any single feature. If the eigenvalues in this tail decay too quickly, then the noise will

concentrate in a few relatively important dimensions increasing the influence of this noise.

Peter Bartlett, the lead author of Bartlett et al.| [2020], outlines this intuition very well in a lecture from
NeurIPS 2021 Bartlett| [2021].

3.2 Other Mechanisms for Achieving Benign Overfitting

The decay rate of s~1log™* s that yields benign overfitting is a very slow rate of decay; it is the slowest
rate of decay that still allows for > 7, s; < oo. Unfortunately as we will soon see it is the only rate of
decay for fixed d = oo that allows for interpolating benign overfitting.

However, with an infinitessimal amount of ridge regularization, we can also achieve benign overfitting. If

“There is a relation between k; and &; see [Misiakiewicz and Montanari, 2023, Ch 2.4] for details.



the amount of ridge A shrinks with n the bias term will still vanish. Moreover:
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where ¢ < 0o because the eigenvalues are summable. Setting A = /s, 1> thus allows X to decay with n in
a way that Y, £? < o(n) and thus & and the variance go to zero.

4) Tempered and Catastrophic Overfitting

Most kernel interpolators however will not be consistent estimators. Using similar techniques as what we
used above, [Mallinar et al.| [2022] show that

o If the kernel eigenvalues decay at a power law rate of s; = i~ for some 1 < a < 00, then & — a.
The bias will disappear, but the variance will converge to (a — 1)o2. We refer to this non-zero but
non-infinite limiting risk as tempered overfitting. Note that most kernels have spectra that fall in
this category. See Fig. 1| (middle) for a visual depiction of this scenario.

e If the kernel eigenvalues decay exponentially, such as s; = i~ !°8% then & — oco. See Fig. [1] (right)
for a visual depiction of this scenario. This scenario, which is the classic interpolation boogeyman,
requires extremely strong assumptions of smoothness.

5) How Smoothness Affects Overfitting Behaviour

There is a very nice relation between the smoothness implied by the spectral decays and their overfitting
behaviours. Intuitively, if we are interpolating a dataset with an infinite amount of noise, then it is very
likely that we will get two data points with opposite noise profiles near each other. I.e., for a given input x,
as n — oo we will likely have the responses 8*(x — d) + € and 0*(x + d) — € in the dataset for some § and e.
If we have to interpolate both of these points with a smooth function (rapidly decaying eigenvalues), there
are lots of constraints on how fast our interpolating function can change. To compensate, our interpolator
will have to have strange wiggles to maintain smoothness. Conversely, if we have slow decaying eigenvalues
(less smoothness), then we can learn a “rough” bump at (x — d) and (z + §) to fit the noise while still
learning the overall signal. This intuition is depicted in Fig.

With that, we have finished our study of high-dimensional linear regression. We have learned that it is not
as scary as it sounds; overparameterization adds a surprising implicit regularization effect and we can even
obtain a consistent estimator while interpolating noise! In the next module, we will relate these results to
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Figure 2: A cartoon depiction of how the smoothness of the kernel function affects the overfitting be-
haviour. (Figure reproduced from [Mallinar et al.| [2022].)

neural networks, using these findings as a first-order approximation for why neural networks fit data so

well.
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