Lecture 09: Large Optimized Neural Networks Are Equivalent to NTK
Least Norm Interpolators
GEOFF PLEISS

In the last lecture we examined a first-order Taylor approximation of neural networks:
f(x;0) = f(2:0) = f(2:0©) + Vo f(x;07) (6 - 6), (1)

where 8(©) is the random variable representing the parameters at initialization. This approximation, known
as the neural tangent kernel (NTK) approximation, is linear with respect to the learnable parameters 6.
Moreover, we saw that, when [|@ — 8| does not grow to quickly with the number of hidden units d, then
this Taylor approximation becomes more exact as d — oo.

We finally arrive at a major result of this course: under certain optimization conditions, the NTK approx-
imation is arbitrarily good for large neural networks even after optimization. More specifically

Theorem 1 (Jacot et al. [2018], simplified). Let {(x1,y1),..., (Zn,yn)} be a training dataset, and let
f(x;0) be a (multiple layer) neural network with d parameters in each hidden layer. If

e the entries of ) are i.i.d. N(0,1),

e the non-linearity o has bounded second derivative, and

e we run gradient descent with an infinitesimally small learning rate on the squared error loss
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then as d — oo the neural network almost surely converges to the interpolator:

k(xi,z1) -+ k(zi,x,) - Y1

flx) = [k(w,zcl) - k(x, a:n)] : : o,
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k(z, @) = Vo f(z;00) Vo f(x';00),

A few remarks are in order about Theorem [T}

° f(w) is an interpolator, and thus has zero training error. We thus achieve a global optimum to
our least squares optimization problem, despite optimizing a function that is non-convex w.r.t. the
learnable parameters!

e k(x, ) is the Neural Tangent Kernel (NTK). As discussed in the last lectures, we can compute
k(x,z') in closed form any neural network architecture. For our simple neural network, the spectrum
of k(x, ) decays polynomially |Geifman et al., [2020].

° f(m) is the least norm interpolator in the RKHS defined by the NTK k(x,z'). In other words, we
would arrive at f(x) if we had performed gradient descent on f(x;0) rather than on f(x;0). (or
rather the least norm interpolator in some RKHS)



e We can analyze the risk of least norm linear models (and the least norm interpolator in RKHS) using
the high-dimensional asymptotic limits we discussed in previous lectures.

e This convergence happens as d — oo, so, perhaps counterintuitively, neural networks become better
behaved and easier to characterize as they get larger.

1) High-Level Intuition

Theorem [1| appeared simultaneously in many publications |Jacot et al., 2018, |Allen-Zhu et al., 2019, Du
et al.l 2019] all of which used fairly complex arguments that relied on specific neural network conditions.

[Chizat et al.l 2019] provided what I consider to be the simplest proof, which demonstrates a much more
general phenomenon about first-order Taylor approximations. At a high level, for large neural networks, the
loss decreases rapidly without the neural network leaving the region where f(x; 0) is a good approximation.

Consider a gradient descent step 811) = 00 — nVoL£(0).

e Assuming we take a small enough step, we have that
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~ VoLl (00).
and thus
£6©) — £(8W) = VoL (@7 (9<1> - a<0>)
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e At the same time, we want to see how much the Jacobian of the neural network changes. If
Vof(z;00) ~ Vgf(x;0®) and 7 is small enough, then the neural network is close to its first
order Taylor approximation about 8(°). Defining the derivative operator norm as

IVef(:00)ll = sup||Ve f(@; B0)l,
(i.e. the largest norm that the Jacobian can take under any input «), we have that
Vo (@:01) = Vof(2:60)] = ||V f(2:6) (6 — 0]
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where ||V f(+;0(?)| is the Hessian operator norm, defined as ||V f(;0(0)|| := sup,, || V5 f(z; 0©)]|.
The penultimate inequality is a standard matrix norm bound; the last inequality follows from the
definition of the operator norm.

e If the relative change of the loss is much faster than the relative change of the Jacobian (i.e. we can
optimize the loss faster than the neural network loses its first order approximation), then:
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Plugging in £(0) = %”f'g — y||3, we have that

IV0£®)ll = ||Voss (fo—v)|
< IVofs Il fo — vl

Since each column in Vg fg has norm at most |V f(-;0)|| we have that ||Vefol < v/n||Vef(-;0)||. Thus,
the condition of Eq. is satisfied if
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or, after rearranging terms (and recognizing that 2,/n is a constant factor that doesn’t matter), if

IVaf (6|

1> —F -t
IVo.f (50|12

1fo —yll :==r (3)

Several fortuitous things happen with wide neural networks with one hidden layer that use our 1/ Vd
scaling;:
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e Each term in the Jacobian Vg f(z;6p) inherits a factor of 1/v/d, and there are O(d) elements in the
term. Thus, [[Ve /(6 )|3 = O(1).

e The Hessian V3 f(; 0©)) also inherits the factor of 1/4/d. By inspection, the only non-zero terms in
the Hessian will be f3;, w; pairs and w;, w; diagonal entries. If & is bounded, then all non-zero terms
in the Hessian are O(1/v/d), where the 1/v/d factor simply comes from the scaling. Each row/column
of the Hessian has at most 2 non-zero terms, so |[V3f(-;0©)|| < O(1/d).

e Putting these two facts together, we have that x in Eq. is O(1/V/d).
Zooming out. To summarize

o We've defined a k ratio that characterizes how fast the loss of our neural network decreases relative
to the change in the Jacobian (i.e. deviation from the first order Taylor approximation) during any
small gradient step.

e Because of the 1/1/d scaling in wide neural networks, we have that x < O(1/v/d).

e Thus, as we run gradient descent, we will reduce the loss of our neural network while remaining
nearly linear with respect to the learnable parameters!

e Gradient descent is biased towards minimum norm solutions in linear models; thus we know that the
neural network will converge to the least norm interpolator in the RKHS defined by the NTK.

2) Proof Strategy

Here are the steps we would need to prove this result more rigorously (see [Chizat et al., |2019] for details):



e We define a very small radius B = oyyin/27, where opiy is the minimum singular value of the
initial Jacobian and « is the maximum value of 6. We study neural network optimization under the
conditions that ||@ — 8| < B.

e Because we are running gradient descent with an infinitesimally small learning rate, we can rewrite
gradient descent as differential equation:

de®)

_ (1)
- VoLl (8).

e We then prove, using standard differential equation theory, that L(O(t)) decays exponentially quickly
as long as |8 — 00| < B.

e We then prove, again using standard differential equation theory, that @) remains close to 8,
and—if d is large enough—||@) — 8| < B for all ¢ € [0, c0).

e Finally, we show that if we had run gradient descent on the first order Taylor approximation f (z;0)
to obtain parameters (), then the difference in parameters |[@(*) — 8()|| decays with d because the
Jacobian does not change too much.

3) Limitations of NTK Analysis

There are a couple of limitations to the NTK analysis:

1. We require wide neural networks. Many neural networks used in practice are not too wide rela-
tive to their depth. A high-dimensional asymptotic approach (scaling width and depth to infinity
simultaneously) can reveal different asymptotic properties |Li et al.| [2021].

2. This setup isn’t totally realistic. It requires that we run gradient descent with an infinitesimally
small learning rate, a regression loss, and full-batch gradient descent.

3. Reducing neural networks to kernel machines loses the “magic” of neural networks. Recall that kernel
machines are linear models, and linear models have been around for forever. Surely if neural networks
were just linear models, then we would have been able to replicate their successes long ago.

In an upcoming lecture we will study neural networks that deviate from this linearity, and we will see
that this analysis can explain some empirical properties that are not captured by the NTK approximation.
Nevertheless, the NTK analysis provides a significant amount of insight. It tells us that we do not have to
be “scared” of large neural networks (in terms of overfitting or poor optimization), and it gives us a useful
tool to approximate the inductive bias of neural networks.
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