Lecture 10: Extensions to Classification
GEOFF PLEISS

So far all of our results for linear models and neural networks have dealt with regression problems. What
about classification—the setting neural networks are most commonly used for? We would like build clas-
sification analogs to the results we obtained for regression.

1. Gradient-based optimization biases overparameterized linear models to a “nice” global minimum.

2. We can characterize the asymptotic risk of these “nice” linear models in terms of the overparameter-
ization ratio and the covariance spectrum.

3. Classification neural networks are well approximated by linear models, even throughout the course
of optimization.

We will focus on (1) in this lecture.

1) Global Minima of Overparameterized Linear Classification

Consider the following linear binary classifier that assigns a class label {—1,1} to an input = € R%:

f(x) = sign <9Tm) ) 6 c RY. (1)
We are given a training set {x;,y;}"_; where y; € {—1,1} which is linearly separable. That is, there
exists some 6 such that y;0] @; > 0 for all i € [1,n] (alternatively, sign (8, ;) = y;). Separability is

guaranteed to occur when d > n (i.e. in the overparameterized setting) and the x; are not colinear.

Let ©; be the set of all unit norm 6 that perfectly separate the training set:

O, = {OERd : 40 x; >0 foralli € [1,n]}. (2)
A few notes are necessary here:

1. If 8, € O, then afl; € O, for all a > 0.

2. Let 6. be some vector in the nullspace of {x;}}" ;. Then 6, + 6, € O,.

3. With a simple analysis argument, let 8; € ®;, and let 8,, € ®, be some other vector such that
;0. x; > 0 (i.e. there is some 4 with y;0,) &; = 0). Then A0, + (1 — \)8,, € O for all A € (0,1).

We have thus proven that there are an infinite number of vectors in ®5. Moreover, taking arguments (2)
and (3), we have that the vectors in @, form a basis of R?l As with overparameterized linear regression,
finding a classifier that achieves perfect training set accuracy is an underconstrained problem.

2) Gradient Descent Selects a “Nice” Global Minimum

For notational simplicity, we will use z; = y;x; from here on out.



In practice, we often select a 6 by by minimizing a convex relaxation of the 0-1 loss function with gradient
descent. Let’s assume that we are minimizing the exponential loss functionﬂ

£6) =3 exp (~uo7=:). 3)

i=1

It’s fairly easy to characterize the global minima of this loss if our data are linearly separable.

e Assume 0 € O,. Then 07z; > 0 for all i € [1,n]. Note that for all finite & € R? we have that
L£(0) > 0 because exp(0 z;) is strictly positive. However,

a—00 a—00 4

lim £(af) = lim Zexp(fcw—rzi) =0.
=1

In other words lim,_,, @@ is a global minimum for any s € Q.

e Assume @ € ©,. Then there is some 0" z; < 0. The portion of this loss will be greater than 1 and
cannot be brought down by scaling. Therefore, 0 is not a global minimum.

Gradient descent will converges to a global minimum of this convex optimization problem. We know
that the limiting solution will have infinite norm because of the scaling argument above, so we are more
interested in the direction of the limiting solution. Let 8 = 0/||@||, where @ is the limiting solution of
gradient descent. As was the case with regression, maybe 6 will converge to some unique “nice” global
minimum, even though there is nothing explicit in the optimization problem forcing it to a particular global
minimum. . .

2.1 The Intuitive Limiting Behaviour of Gradient Descent

Let 6(t) be the parameter vector after ¢ steps of gradient descent. As with our NTK optimization anal-
ysis, let’s assume that gradient descent takes infinitesimally small steps, so that 6(t) is governed by the
differential equation:

(1) = —VL(O(t)) = exp (—zj H(t)) zi. (4)

Assume that we have run gradient descent for long enough so that 8(t) € @,—i.e. we have achieved perfect
training set accuracy. At this point the amount that each data point contributes to the gradient becomes
exponentially smaller as —z; 0(t) grows.

We will continue drive down the loss further by having the magnitude of 6(¢) grow. However, the data
points that contribute the most to the gradient are those for which —ziT 0(t) is least negative. Denoting
this set of support vectors as S(t), i.e.:

S(t) = { - 15760)] = min

o)}
the gradient will asymptotically be dominated by these points:

O(t)~ > exp (—ZJ-TO(t)) Zj»
)

JES(t

IThe results we will prove hold for other loss function, like the more common logistic loss function. However, the result is
most straightforward with the exponential loss. Other loss functions have similar proofs but require more tedious bookkeeping.



and so 0(t) is only growing in the directions spanned by z;. Ast — oo and ||@(t)|| — oo, the normalized
0(t)/]|€(t)|| will be a linear combination of these support vectors:

8(t) io«z- a; >0 if z; € limy_yoo S(t) 5)
i1 e ;=0 if z; € limy_y oo S(t)

Minimum norm interpretation. Discerning eyes will recognize Eq. as the dual form of the support
vector machine (SVM) classifier, which is (colinear) to the solution to the (primal) optimization problem:

mein 10]12 subject to 87Tz >1 forallic [1,n]. (6)
The SVM solution is known as the maximum margin classifier, as it maximizes the minimum distance
between all training points and the separating hyperplane. From Eq. @ we see a close connection between

the classification and regression gradient descent solutions: both are minimum norm solutions within some
constrained optimization problem around data interpolation.

2.2 Proof

Let 8 be the solution to Eq. @ We will decompose 6(t) into three arbitrary terms:
(t) = log(t)8 + w + 7(t), (7)

where r(t) is some residual term, and w is a vector used to construct the a, coefficients in Eq. :

w : exp (—'szi> —o; = 6= Z exp (—'szj) zj. (8)

zZj €S

(Note that such a w € R? exists because there are fewer than n support vectors and d > n.) Our goal is
to show that r(t) is bounded for all ¢ € [0, 00), and thus the log(¢)@ term dominates 6(t) as t — co.

Writing 7(¢) and its derivative as:



we can write the differential equation governing |7 (¢)]|3:

S0 = (1) Tr(t)

-
. 6 + z’"”: exp | —z o(t) zi| r(t) (plugging in Eq. (4))
t ~~ — v N/ i ggimng .
zzieS xp(w’ zi)zi '~ log(t)0+w+r(t)
1 = .
=— n exp(—w ' z;)z; 7(t) + Z exp (— log(t)z @ — 2z w — z;r(t)) z! (1)
zZ;, €S =1

Bi i
(distributing in r(t))

:—fZexp —w' z)z r(t +Zexp< log(t)z; é—z?w—zjr(t))z;r(t)
zZ; €S B,

i
(distributing in r(t))

Unfortunately, this is a complicated differential equation involving r(¢) terms. Let’s see if we can bound
out of the equation.

We'll start by rearrange terms in ;. Defining u; = w ' 2; and v;(t) = 2,/ r(t), we have:

Vi = exp (— log(t)z;é) exp (—z;'w) exp <—z;r(t)) z (1)

= 1Té exp (—u;) exp (—v;(t)) vi(t)

tZi

and using the same terms for 3;, we have that

i = 5 exp (—ug) ilt).

If z; € S, then it is a support vector and so z; @; = 1. Therefore, for these terms we have that

~ = exp(—ui) w(f) (exp (o) = 1).

<0

If z; ¢S, then 2z @ > 1. Recognizing that exp(—uv;(t))vi(t) < 1, we have that
1
Vi < 7o exp(—ui),
where ¢ = min,gs zzTé > 1.
All together, we have bounded away any r(t) term out of our differential equation governing ||r(t)]|3.

Its derivative is upper bounded by the sum of negative terms (yay!) coming from the support vectors
as well as the sum of slowly-growing positive terms (yay!) coming from the non-support vectors. More

lreE=o ().

mathematically,



which integrates to some finite constant. Thus, (t) is bounded for all ¢ € [0, 00), and so 8(¢) is dominated
by the 6 term as t — oo.

3) Extensions

This maximum margin convergence has been extended to numerous other scenarios. Some well-known
results:

e Soudry et al. [2018] extend this proof idea to non-exponential losses as well as to gradient descent
with non-infinitessimal step sizes.

e Nacson et al. [2019] extend this proof idea to non-exponential losses as well as to gradient descent
with non-infinitessimal step sizes.

e Lyu and Li [2020] extend this proof idea to neural networks with homogeneous activation functions.

e Ji and Telgarsky| [2020] extend this proof idea to neural networks with non-homogeneous activation
functions.

Analyzing the generalization of maximum margin classifiers is quite a bit more difficult than for linear
regression. It is still a very active area of research, though many researchers have developed margin-based
generalization bounds [e.g. [Bartlett et al., 2017, |Cao et al., 2021].
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