
Lecture 11: Moving Beyond the Linear Approximation Regime
Geoff Pleiss

Thus far we have examined neural networks through the lens of linearization. While we have shown that
this approximation is (under certain conditions) exact for infinitely wide networks, there are reasons to
believe that the linear approximation is not the whole story, especially for real-world neural networks.

1. If the Jacobian of the neural network stays fixed during training, then the neural network is not
performing “feature learning.” The story of neural networks (and what is seen in practice) is that
the hidden features learn to pick up on specific patterns in the data. (Think of face detectors for
image data or word embeddings for text data.) Under the linear approximation, the features of a
neural network are based solely on architecture and initialization. A neural network would thus have
to have face-detecting features built in from the start rather than learning them from the data.

2. Belatedly, linearized neural networks cannot perform transfer learning, where the hidden represen-
tations learned on one (usually large) dataset are used to jump-start learning on a tangentially related
(usually smaller) dataset. If linearized neural networks are not learning features from the data, then
there is no reason to “transfer” its features to a new dataset. In practice, however, transfer learning
is a powerful tool that has allowed us to achieve remarkable performance on small datasets that
otherwise would not be able to be learned with neural networks.

Researchers have provided evidence supporting these thoughts:

1. Empirical studies have demonstrated that the Jacobian of the neural network deviates from its
initialization Fort et al. [2020].

2. Theoretical analyses have shown that neural networks do not always learn efficiently in the linearized
regime. For example, Yehudai and Shamir [2019] demonstrate that it takes exponentially many
samples for a linearized neural network to learn the function f(x) = max{0, x}.

3. Other empirical and theoretical studies have shown that though SGD implicitly biases towards min-
imizing some functional norm, the minimized norm is often not the RKHS norm (or, more generally,
some norm defined by an inner product). For example, Savarese et al. [2019] finds that the learned
functions often minimize a semi-norm based on function derivatives, while Woodworth et al. [2020]
suggest that the learned functions minimize a sparse functional norm.

4. Finally, if we consider wide-and-deep neural networks (e.g. networks where width and depth are
scaled proportionally to one another, rather than one being fixed while the other goes to infinity),
linear approximations break down Li et al. [2021].

1) Characterizing Feature Learning

Characterizing feature learning and deviations from linearized behaviour is an active area of research.
Some researchers have aimed to examine finite-width neural networks by adding correction terms to the
linearized approximation [Hanin and Nica, 2020, e.g.]. However, this approach is cumbersome and does not
give much intuition into feature learning behaviour. Moreover, these results imply that feature learning
relies on small width, contrary to real-world empirical results that demonstrate great empirical successes
with wide neural networks [Zagoruyko and Komodakis, 2016].

1

Approach: scaling arguments. Instead, we take inspiration from the scaling argument of Chizat
et al. [2019]. Recall that our optimization analysis of the NTK approximation relied on kappa—the change
in Jacobian relative to the change in loss—being very small:

κ ≍
∥∥∇2

θf(·;θ0)
∥∥

∥∇θf(·;θ0)∥2
.

For a one-hidden-layer neural network with D hidden features,

f(x;θ) =
1√
D

D∑
i=1

βiϕ(w
⊤
i x), θ =

[
β1 . . . βD w1 . . . wD

]⊤
, (1)

recall that the numerator scaled as 1/
√
D (thanks to the scaling factor) and the denominator scaled as

1/D ×D = 1 (the square of the scaling factor time the number of terms in the vector). Thus, κ ≍ 1/
√
D,

implying that we optimized while staying within the linearized approximation about the initialization.

A change in scale? What if we instead changed the scaling in Eq. (1) to 1/D? The numerator would
scale as 1/D (the scaling factor) and the denominator would scale as 1/D2 ×D = 1/D (the scaling factor
squared times the number of terms in the vector). Thus, κ ≍ 1, implying that optimizing changes the loss
and the Jacobian and equal rates and that we will deviate from the linearized approximation.

We will take inspiration from this scaling argument to construct a characterization of neural networks that
deviate from the linearized approximation.

2) The µP Regime of Linear Neural Networks

In an extremely dense paper,1 Yang and Hu [2021] characterize the set of conditions under which neural
networks with infinite width (1) optimize to a global minimum but (2) cannot be characterized by a
linearization around the initialization. The so-called maximal update parameterization, or µP regime,
occurs on the brink of stable training (hence the name) and is a set of necessary ratios to ensure feature
learning even in the infinite-width limit.

In a tech report, Yang et al. [2023] introduce a more straightforward derivation of the µP regime relying
on a spectral scaling argument in the same vein as Chizat et al. [2019]. We present an intuitive overview
of their argument on a simplfied neural network model.

2.1 Setup: The Linear Neural Network

We will consider a three-layer neural network with no nonlinear activation and width-D layers:

f(x;θ) = W3W2W1x, θ :=
[
flatten(W1) flatten(W2) flatten(W3)

]
,

where W1,W2,W3 are learnable parameters. If f : RP → R, then:

W1 ∈ RD×P , W2 ∈ RD×D, W3 ∈ R1×D.

We further assume that the entries of Wi are initialized i.i.d. from N (0, σ2
i).

1This paper is technically part 4 of a much longer manuscript [Yang, 2019] introducing the Tensor Program framework.
This framework can be used to (1) derive limiting kernels of any architecture and (2) characterize when the linearization
approximation holds or breaks down. However, the original manuscript was so dense that Greg Yang broke it up into four
sections, each published as standalone papers.

2

We will train f on a single data point x, y. Denote hi as the “features” or “activations” of x in layer i:

hi = Wihi−1, h0 = x, h3 = f(x;θ),

with h0 ∈ RP , h1 ∈ RD, h2 ∈ RD, and h3 ∈ R.

We will observe what happens to h1,h2,h3 as well as W1,W2,W3 after one gradient step of training with
learning rate η on the loss L(W1,W2,W3) := L. The changes to W1,W2,W3, denoted ∆W1,∆W2,∆W3,
are given by the gradient descent update with layer-wise learning rates η1, η2, η3:

∆W1 = −η1∇W1L, ∆W2 = −η2∇W2L, ∆W3 = −η3∇W3L.

We will also denote ∆h1,∆h2,∆h3 as the changes to the features h1,h2,h3 after one gradient step:

∆hi = (Wi +∆Wi) (hi−1 +∆hi−1)− hi

= (∆Wihi−1) + (Wi∆hi−1) + (∆Wi∆hi−1) (2)

If the properties of ∆W1,∆W2,∆W3 and ∆h1,∆h2,∆h3 are “stable” then they will hold throughout
training and thus will determine the network’s training dynamics.

Our goal is to characterize the dynamics of ∆W1,∆W2,∆W3 and ∆h1,∆h2,∆h3 in terms of

1. the initialization variance σ2
1, σ

2
2, σ

2
3 and

2. the learning rates η1, η2, η3.

2.2 Conditions for Stable Training

What is required for training to be “stable?” Yang et al. [2023] propose two conditions:

1. (Equi-Scale condition): as is the norm for neural networks, each hidden feature [hi]j should roughly
be on the same scale, and thus:

∥h1∥2, ∥h2∥2 = Θ
(√

D
)
, ∥h3∥2 = |h3| = Θ(1) .

2. (Feature learning condition): each hidden feature [hi]j should have meaningful but non-divergent
updates, and thus:

∥∆h1∥2, ∥∆h2∥2 = Θ
(√

D
)
, ∥∆h3∥2 = |∆h3| = Θ(1) .

Let’s consider what happens if each of these conditions does not hold:

• The first condition stipulates that each hidden feature has a non-negligible mass. It is challenging to
design a neural network where this condition does not hold; most neural networks hidden layers are
built using components that roughly preserve the scale of the input.

• The second condition stipulates that each hidden features also have a Θ(1) update during training. If
the updates are ω(1) then the hidden features would diverge. If the update are o(1) then the hidden
features remain constant and no “feature learning” occurs.

3

2.3 Sufficient Spectral Conditions

In general, it is challenging to enforce these properties on the hidden activations themselves. However, a
sufficient set of conditions to ensure these hidden activation properties are the following spectral constraints
on the weight matrices:

∥W1∥ = Θ
(√

D/P
)
, ∥W2∥ = O (1) , ∥W3∥ = O

(
1/
√
D
)
.

∥∆W1∥ = Θ
(√

D/P
)
, ∥∆W2∥ = O (1) , ∥∆W3∥ = O

(
1/
√
D
)
.

where ∥W ∥ is the spectral norm of the matrix W , i.e. the largest singular value of W . To see why these
these conditions are sufficient, we can apply submultiplicativity of the spectral norm:

∥h1∥2 ≤ ∥W1∥∥x∥2 = Θ
(√

D
)
,

∥h2∥2 ≤ ∥W2∥∥h1∥2 = Θ
(√

D
)
,

∥h3∥2 ≤ ∥W2∥∥h1∥2 = Θ(1) ,

and, by applying the same bound likewise to Eq. (2), we have

∥∆h1∥2 ≤ ∥∆W1∥∥x∥2 = Θ
(√

D
)
,

∥∆h2∥2 ≤ ∥∆W2∥∥h1∥2 + ∥W2∥∥∆h1∥2 + ∥∆W2∥∥∆h1∥2 = Θ
(√

D
)
,

∥∆h3∥2 ≤ ∥∆W3∥∥h2∥2 + ∥W3∥∥∆h2∥2 + ∥∆W3∥∥∆h2∥2 = Θ(1) .

It turns out that these submultiplicative bounds are tight. Recall from Lecture 4 that the singular values
of a matrix W ∈ RM×m with i.i.d. N (0, σ2) entries2 adhere to a (scaled) Marchenko-Pastur distribution
as M,m → ∞ simultaneously. The largest singular value supported by the Marchenko-Pastur distribution
is σ(

√
M +

√
m), and thus we expect the spectral norm of W to concentrate around this value. For W1,

we have M = D and m = P , and thus

∥W1∥ ≈ σ1(
√
D +

√
P) = Θ

(
σ1

√
D
)
.

Moreover, by the linear Gaussian identity, the entries of W1x are i.i.d. N (0, σ2
1∥x∥22). Applying any

standard concentration inequality, we see that the norm of hi+1 ∈ RD concentrates around
√
Dσi∥x∥2,

and thus ∥h1∥2 = Θ(∥W1∥∥h0∥2). Analogous results hold for ∥h2∥2 and ∥h3∥2.

Now consider the bound on ∥∆h2∥. By backpropagation we have that

∆W1 = −η1∇W1L = −η1∇h1Lx⊤,

and so the update ∆W1 is rank-one and aligned with h1:

∥∆h1∥2 = ∥∆W1x∥2 = η1∥∇h1Lx⊤x∥2 = η1∥∇h1L∥2∥x∥22 = ∥∆W1∥∥x∥2,

where the last equality makes use of the spectral norm of rank-1 matrices:

∥∆W1∥ = ∥η1∇h1Lx⊤∥ = η1∥∇h1L∥2∥x∥2.

Applying this same logic recursively shows that the bounds on ∥∆h2∥2 and ∥∆h3∥2 are tight as well.

2From Lecture 4 we discussed the distribution of eigenvalues of 1
M
W⊤W , which are the same as the singular values of

1√
M
W

4

2.4 Achieving the Sufficient Spectral Conditions

How do we achieve these spectral conditions? The conditions on ∥Wi∥ are straightforward. Using the
reasoning above about the concentration of spectral norms:3

∥W1∥ ≈ σ1

(√
D +

√
P
)
, ∥W2∥ ≈ σ2

(
2
√
D
)
, ∥W3∥ ≈ σ3

(√
D
)
,

we can thus achieve t norms with an appropriate σi value:

σ1 = Θ
(√

1/P
)

⇒ ∥W1∥ = Θ
(√

D/P
)
,

σ2 = Θ
(√

1/D
)

⇒ ∥W2∥ = Θ(1) ,

σ3 = Θ(1/D) ⇒ ∥W3∥ = Θ
(√

1/D
)
.

The condition on ∥∆Wi∥ is a bit more tedious to achieve. We begin with an analysis of the magnitude of
the gradients. Using the chain rule/backpropagation, we have:

∇W3L = (∇h3L)h2 = (∇h3L)W2W1x

∇h2L = (∇h3L)W⊤
3

∇W2L = (∇h2L)h⊤
1 = (∇h3L)W⊤

3 h⊤
1 = (∇h3L)W⊤

3 W1x

∇h1L = (∇h2L)W⊤
2 = (∇h3L)W⊤

3 W⊤
2

∇W2L = (∇h1L)x⊤ = (∇h3L)W⊤
3 W⊤

2 x.

Assuming that ∇h3L = Θ(1) and that we have set σ1, σ2, σ3 to achieve the desired spectral norm on
W1,W2,W3, we can apply the same reasoning as we did when analyzing the bounds of Wihi to show that:

∥∇W3L∥ = |∇h3L|∥W2∥∥W1∥∥x∥2 = Θ
(√

D
)

∥∇W2L∥ = |∇h3L|∥W3∥∥W1∥∥x∥2 = Θ(1)

∥∇W1L∥ = |∇h3L|∥W3∥∥W2∥∥x∥2 = Θ
(√

P/D
)

Thus, recalling that ∆Wi = −ηi∇WiL, we can achieve the desired spectral norms on ∆Wi by setting the
learning rates ηi appropriately:

η1 = Θ(D/P) ⇒ ∥∆W1∥ = Θ
(√

D/P
)
,

η2 = Θ(1) ⇒ ∥∆W2∥ = Θ(1) ,

η3 = Θ(1/D) ⇒ ∥∆W3∥ = Θ
(√

1/D
)
.

2.5 Zooming Out

Taking everything together, we have demonstrated that one iteration of gradient descent produces mean-
ingful updates to hidden features (i.e. ∆[hi]j = Θ(1)). Contrast this scenario with the linearized regime,

3Technically W3 is a vector, so it is not suited for a high-dimensional asymptotic analysis. However, since it is a vector,
its spectral norm simply becomes the vector 2-norm which will concentrate around

√
Dσ3.

5

where the hidden features barely changed during training (yet—from the power of averaging—would still
yield low loss). We consider the meaningful updates to hidden features as a form of “feature learning.”

While we have only sketched informal results in a very simplified training scenario, [Yang and Hu, 2021]
derive rigorous feature learning results for any neural network architecture over the entire course of training.

3) Open Questions

There are several open questions from our analysis:

1. What do the resulting features converge to?

2. What is the risk associated with the feature learned neural network?

These are challenging questions to answer because we lose a connection with (overparameterized) linear
regression. Woodworth et al. [2020] suggest that the learned features minimize a sparse functional norm,
though there is no closed form for this solution. Without a closed form solution it is challenging to
characterize the risk. These analysis, coupled with the overwhelming empirical evidence in favour of
feature learning, shows that we still have far to go in understanding why neural networks work.

References

L. Chizat, E. Oyallon, and F. Bach. On lazy training in differentiable programming. In Advances in Neural Infor-
mation Processing Systems, volume 32, 2019.

S. Fort, G. K. Dziugaite, M. Paul, S. Kharaghani, D. M. Roy, and S. Ganguli. Deep learning versus kernel learning:
an empirical study of loss landscape geometry and the time evolution of the neural tangent kernel. In Advances
in Neural Information Processing Systems, volume 33, 2020.

B. Hanin and M. Nica. Finite depth and width corrections to the neural tangent kernel. In International Conference
on Learning Representations, 2020.

M. Li, M. Nica, and D. Roy. The future is log-Gaussian: ResNets and their infinite-depth-and-width limit at
initialization. In Advances in Neural Information Processing Systems, volume 34, 2021.

P. Savarese, I. Evron, D. Soudry, and N. Srebro. How do infinite width bounded norm networks look in function
space? In Conference on Learning Theory, pages 2667–2690, 2019.

B. Woodworth, S. Gunasekar, J. D. Lee, E. Moroshko, P. Savarese, I. Golan, D. Soudry, and N. Srebro. Kernel and
rich regimes in overparametrized models. In Conference on Learning Theory, pages 3635–3673. PMLR, 2020.

G. Yang. Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient indepen-
dence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760, 2019.

G. Yang and E. J. Hu. Feature learning in infinite-width neural networks. In International Conference on Learning
Representations, 2021.

G. Yang, J. B. Simon, and J. Bernstein. A spectral condition for feature learning. arXiv preprint arXiv:2310.17813,
2023.

G. Yehudai and O. Shamir. On the power and limitations of random features for understanding neural networks. In
Advances in Neural Information Processing Systems, volume 32, 2019.

S. Zagoruyko and N. Komodakis. Wide residual networks. In British Machine Vision Conference, 2016.

6

	Characterizing Feature Learning
	The P Regime of Linear Neural Networks
	Setup: The Linear Neural Network
	Conditions for Stable Training
	Sufficient Spectral Conditions
	Achieving the Sufficient Spectral Conditions
	Zooming Out

	Open Questions

