
STAT547U Diagnostic Problem Set
Your Name

The purpose of this problem set is to ensure that you are fluent with linear algebra and basic probability
theory, which will be necessary for the course. If these problems feels extremely difficult, then you will
likely find this course to be technically overwhelming.

There are 3 questions (broken into subquestions) in this problem set for a total of 60 pts.

A quick note on notation. Variable names should use the following convention:

• Scalars (deterministic and random) will be represented by lowercase/non-bold letters (e.g. a, θ, etc.).

• Vectors (deterministic and random) will be represented by lowercase/bold letters (e.g. a, θ, etc.).

• Matrices (deterministic and random) will be represented by uppercase/bold letters (e.g. A, Θ, etc.).

1) Introduction to Functional Analysis (20 pts)

Let µ(xi) be a probability distribution over Rd with mean 0 and covariance Σ; i.e.

E[xi] = 0, E[xix
⊤
i ] = Σ ∈ Rd×d.

Consider the space of linear Rd → R functions H := {f(x) = θ⊤x : θ ∈ Rd}.

1. (4 points. L2 inner products) For any two functions f(x) = θ⊤x and f ′(x) = θ′⊤x, define the L2
inner product ⟨f, f ′⟩L2 as 〈

f, f ′〉
L2

:= E[f(x)f ′(x)].

Show that this inner product is equal to θ⊤Σθ′.

2. (4 points. Orthonormal functions) An orthonormal basis of H is a set of functions {ϕ1, . . . , ϕd} such
that

• any function f(x) ∈ H can be written as the linear combination of ϕ1, . . . , ϕd and

• E[ϕi(x)ϕj(x)] =

{
1 i = j

0 i ̸= j
.

Construct an orthonormal basis ofH—ϕ1(x), . . . , ϕd(x)—in terms of (λ1,v1), . . . , (λd,vd)—the eigen-
values and eigenvectors of Σ.

(Hint: This answer should take you ≈ 5 lines.)

3. (4 points. H inner products) For any two functions f(x) = θ⊤x and f ′(x) = θ′⊤x, define the H
inner product ⟨f, f ′⟩H as 〈

f, f ′〉
L2

:=
d∑

i=1

1
σi

⟨f, ϕi⟩L2
〈
f ′, ϕi

〉
L2

,

where {ϕ1, . . . , ϕd} is any orthonormal basis of H, and σ1, . . . , σd are scalars such that, for any z ∈ Rd

that is fixed (i.e. not random),∫
ϕi(x)(x

⊤z)dµ(x) = E[ϕi(x)(x
⊤z)] = σiϕi(z)
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Show that this inner product is equal to θ⊤θ′.

(Hint: This proof should take you ≈ 6 lines.)

4. (4 points. H ⊂ L2.) Now assume that d → ∞. Assuming that the eigenvalues of Σ are summable
(i.e. limd→∞

∑d
i=1 λi < ∞), prove that—for any f ∈ H—∥f∥L2 < ∞ if ∥f∥H < ∞, where

∥f∥L2 :=
√
⟨f, f⟩L2, ∥f∥H :=

√
⟨f, f⟩H.

(Note: if you’re smart with your linear algebra, this proof should take you ≈ 4 lines.)

5. (4 points. L2 ̸⊂ H.) Show that the converse is not true. I.e., as d → ∞, construct a function where
∥f∥L2 < ∞ but ∥f∥H = ∞. (You should continue to assume that limd→∞

∑d
i=1 λi < ∞.)

2) Ridge(less) Linear Regression (20 pts)

Assume that we are performing linear regression to predict a real-valued response variable y ∈ R from a
d-dimensional input variable x ∈ Rd using the parameter vector θ∗:

y = x⊤θ∗

Given training data (x1, y1), . . . , (xn, yn), the ridge regression estimator θ̂λ is given by:

θ̂λ =
(
λI +X⊤X

)−1
X⊤y. (1)

• X ∈ Rn×d is a matrix where each row represents a training input (i.e. X⊤ =
[
x1 . . . xn

]
),

• y ∈ Rn is the concatenation of the training responses, and

• λ > 0 is the ridge constant.

For all problems, assume that X is full rank..

1. (5 points.) Using Woodbury’s matrix inversion lemma, prove that θ̂λ is equal to

θ̂λ = X⊤
(
λI +XX⊤

)−1
y. (2)

(Hint: after applying Woodbury, consider rewriting I as (λI +XX⊤)−1(λI +XX⊤).)

2. (3 points.) We now have two formula for θ̂λ: Eq. (1) and Eq. (2). From a computational perspective,
which formula is preferable when n > d? When d < n? Justify your answer in ≈ 2 sentences. (Hint:
think about the matrices you have to invert.)

3. (3 points.) Consider the scenario where d > n; i.e. we have more features than training data. This
scenario is often referred to as the overparameterized regime. Assuming that X is full rank, show
that the ridge estimator interpolates the training data as λ → 0; i.e.

lim
λ→0

Xθ̂λ = y.

This proof should take you ≈ 2 lines.
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4. (3 points.) Now consider the scenario where n > d; i.e. we have more training data than features.
This scenario is often referred to as the underparameterized regime. Assuming that X is full rank,
show that

X
(
X⊤X

)−1
X⊤ = UU⊤,

where U is some n× d orthonormal matrix.

5. (3 points.) In ≈ 3 sentences, derive the eigenvalues and the corresponding eigenvectors of UU⊤.

6. (3 points.) Putting the last two results together, argue why—in general—θ̂λ does not interpolate the
training data in the underparameterized ridgeless regime (λ = 0, n > d).

3) Bias-Variance Tradeoff (20 pts)

Now imagine that x1, . . . ,xn from the previous problem are i.i.d. samples from a distribution µ(x) and
yi ∼ N (x⊤

i θ
∗, σ2) for each i ∈ [1, n]. Assume that the yi are conditionally independent given xi. Let θ̂λ

be the ridge estimator given in Eq. (1) (or, equivalently, in Eq. (2)).

Consider a new (independent) test point (x, y), where x ∼ µ(x) and y ∼ N (x⊤θ∗, σ2), the risk is defined
as

R := E
[(

x⊤θ̂λ − x⊤θ∗
)2

]
.

1. (7 points.) Decompose R into two components that represent squared bias and variance of x⊤θ̂λ.
(Hint: consider adding and subtracting x⊤E[θ̂λ] inside the parentheses.)

2. (6 points.) Show that the squared bias of x⊤θ̂λ is 0 when λ = 0 and n > d. (This proof should take
3 lines when you write E[θ̂λ=0] as E[(X⊤X)−1Xy] and rewrite y in terms of X.)

3. (7 points.) Show that bias term of is nonzero when d > n and λ → 0. For this problem you can
make the following assumptions:

• Limits and expectations can be interchanged— i.e. you can assume that limλ→0 E[θ̂λ] =
E[X⊤(XX⊤)−1y]. No need to dive into the measure theory!

• E[xx⊤] := Σ is positive definite.

(There are many ways to prove this statement. Use your linear algebra and probability skills. Be
creative!)
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