You need to enable JavaScript to run this app.
Geoff Pleiss
Research
Overview
Uncertainty Quantification
Bayesian Optimization
Deep Learning
Scalable Gaussian Processes via Numerical Methods
Spatiotemporal Modeling
Probabilistic Modeling
Computer Vision
Teaching
(2025) STAT 547U (Topics in Deep Learning Theory)
(2024) STAT 406 (Methods for Statistical Learning)
(2023) STAT 520P (Bayesian Optimization)
STAT 548 (PhD Qualifying Course)
Open Source
GPyTorch
LinearOperator
Blog
Neural Network Calibration
Area Under the Margin (AUM)
CV
Bio
Google Scholar
Github
Complete List of Publications By Topic
Uncertainty Quantification
NEW
Asymmetric Duos: Sidekicks Improve Uncertainty
Tim G. Zhou
Evan Shelhamer
Geoff Pleiss
— Under Submission
PDF
NEW
Theoretical Limitations of Ensembles in the Age of Overparameterization
[Spotlight presentation]
Niclas Dern
John P. Cunningham
Geoff Pleiss
— In International Conference on Machine Learning, 2025
PDF
Github
Talk
Sharp Calibrated Gaussian Processes
Alexandre Capone
Sandra Hirche
Geoff Pleiss
— In Neural Information Processing Systems, 2023
PDF
Posterior and Computational Uncertainty in Gaussian Processes
Jonathan Wenger
Geoff Pleiss
Marvin Pförtner
Philipp Hennig
John P. Cunningham
— In Neural Information Processing Systems, 2022
PDF
Github
Deep Ensembles Work, But Are They Necessary?
Taiga Abe*
E. Kelly Buchanan*
Geoff Pleiss
Richard Zemel
John P. Cunningham
* Authors contributed equally
— In Neural Information Processing Systems, 2022
PDF
Github
Talk
On Fairness and Calibration
Geoff Pleiss*
Manish Raghavan*
Felix Wu
Jon Kleinberg
Kilian Q. Weinberger
* Authors contributed equally
— In Neural Information Processing Systems, 2017
PDF
Github
On Calibration of Modern Neural Networks
Chuan Guo*
Geoff Pleiss*
Yu Sun*
Kilian Q. Weinberger
* Authors contributed equally
— In International Conference on Machine Learning, 2017
PDF
Github
Talk
Bayesian Optimization
NEW
What Actually Matters for Materials Discovery: Pitfalls and Recommendations in Bayesian Optimization
Tristan Cinquin
Stanley Lo
Felix Strieth-Kalthoff
Alán Aspuru-Guzik
Geoff Pleiss
Robert Balmer
Tim G. J. Rudner
Vincent Fortuin
Agustinus Kristiadi
— In Symposium on Advances in Approximate Bayesian Inference, Workshop Track, 2025
Approximation-Aware Bayesian Optimization
[Spotlight presentation]
Natalie Maus
Kyurae Kim
Geoff Pleiss
David Eriksson
John P. Cunningham
Jacob R. Gardner
— In Neural Information Processing Systems, 2024
PDF
Github
How Useful is Intermittent, Asynchronous Expert Feedback for Bayesian Optimization?
Agustinus Kristiadi
Felix Strieth-Kalthoff
Sriram Ganapathi Subramanian
Vincent Fortuin
Pascal Poupart
Geoff Pleiss
— In Symposium on Advances in Approximate Bayesian Inference, Workshop Track, 2024
PDF
Github
A Sober Look at LLMs for Material Discovery: Are They Actually Good for Bayesian Optimization Over Molecules?
Agustinus Kristiadi
Felix Strieth-Kalthoff
Marta Skreta
Pascal Poupart
Alán Aspuru-Guzik
Geoff Pleiss
— In International Conference on Machine Learning, 2024
PDF
Github
Fast Matrix Square Roots with Applications to Gaussian Processes and Bayesian Optimization
Geoff Pleiss
Martin Jankowiak
David Eriksson
Anil Damle
Jacob R. Gardner
— In Neural Information Processing Systems, 2020
PDF
Github
Talk
Deep Learning
NEW
Asymmetric Duos: Sidekicks Improve Uncertainty
Tim G. Zhou
Evan Shelhamer
Geoff Pleiss
— Under Submission
PDF
NEW
Theoretical Limitations of Ensembles in the Age of Overparameterization
[Spotlight presentation]
Niclas Dern
John P. Cunningham
Geoff Pleiss
— In International Conference on Machine Learning, 2025
PDF
Github
Talk
Pathologies of Predictive Diversity in Deep Ensembles
[Featured Paper]
Taiga Abe
E. Kelly Buchanan
Geoff Pleiss
John P. Cunningham
— In Transactions on Machine Learning Research, 2024
PDF
Talk
The Effects of Ensembling on Long-Tailed Data
E. Kelly Buchanan
Geoff Pleiss
Yixin Wang
John P. Cunningham
— In NeurIPS "Heavy Tails in ML: Structure, Stability, Dynamics" Workshop, 2023
PDF
Github
The Best Deep Ensembles Sacrifice Predictive Diversity
[Oral Presentation]
Taiga Abe*
E. Kelly Buchanan*
Geoff Pleiss
John P. Cunningham
* Authors contributed equally
— In NeurIPS "I Can't Believe It's Not Better!" Workshop, 2022
PDF
Deep Ensembles Work, But Are They Necessary?
Taiga Abe*
E. Kelly Buchanan*
Geoff Pleiss
Richard Zemel
John P. Cunningham
* Authors contributed equally
— In Neural Information Processing Systems, 2022
PDF
Github
Talk
The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective
Geoff Pleiss
John P. Cunningham
— In Neural Information Processing Systems, 2021
PDF
Github
Talk
Identifying Mislabeled Data using the Area Under the Margin Ranking
Geoff Pleiss
Tianyi Zhang
Ethan Elenberg
Kilian Q. Weinberger
— In Neural Information Processing Systems, 2020
PDF
Github
Talk
Convolutional Networks with Dense Connectivity
Gao Huang*
Zhuang Liu*
Geoff Pleiss
Laurens van der Maaten
Kilian Q. Weinberger
* Authors contributed equally
— In IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019
PDF
Github
On Calibration of Modern Neural Networks
Chuan Guo*
Geoff Pleiss*
Yu Sun*
Kilian Q. Weinberger
* Authors contributed equally
— In International Conference on Machine Learning, 2017
PDF
Github
Talk
Memory-Efficient Implementation of DenseNets
Geoff Pleiss*
Danlu Chen*
Gao Huang
Tongcheng Li
Laurens van der Maaten
Kilian Q. Weinberger
* Authors contributed equally
— In , 2017
PDF
Github
Snapshot Ensembles: Train 1, Get M for Free
Gao Huang*
Yixuan Li*
Geoff Pleiss
Zhuang Liu
John E. Hopcroft
Kilian Q. Weinberger
* Authors contributed equally
— In International Conference on Learning Representations, 2017
PDF
Github
Scalable Gaussian Processes via Numerical Methods
Computation-Aware Gaussian Processes: Model Selection And Linear-Time Inference
Jonathan Wenger
Kaiwen Wu
Philipp Hennig
Jacob R. Gardner
Geoff Pleiss
John P. Cunningham
— In Neural Information Processing Systems, 2024
PDF
Github
Large-Scale Gaussian Processes via Alternating Projection
Kaiwen Wu
Jonathan Wenger
Hadyn Jones
Geoff Pleiss
Jacob R. Gardner
— In Artificial Intelligence and Statistics, 2024
PDF
Github
CoLA: Exploiting Compositional Structure for Automatic and Efficient Numerical Linear Algebra
Andres Potapczynski*
Marc Anton Finzi*
Geoff Pleiss
Andrew Gordon Wilson
* Authors contributed equally
— In Neural Information Processing Systems, 2023
PDF
Github
Posterior and Computational Uncertainty in Gaussian Processes
Jonathan Wenger
Geoff Pleiss
Marvin Pförtner
Philipp Hennig
John P. Cunningham
— In Neural Information Processing Systems, 2022
PDF
Github
Preconditioning for Scalable Gaussian Process Hyperparameter Optimization
[Oral Presentation]
Jonathan Wenger
Geoff Pleiss
Philipp Hennig
John P. Cunningham
Jacob R. Gardner
— In International Conference on Machine Learning, 2022
PDF
Github
Talk
Bias-Free Scalable Gaussian Processes via Randomized Truncations
Andres Potapczynski*
Luhuan Wu*
Dan Biderman*
Geoff Pleiss
John P. Cunningham
* Authors contributed equally
— In International Conference on Machine Learning, 2021
PDF
Github
Talk
Fast Matrix Square Roots with Applications to Gaussian Processes and Bayesian Optimization
Geoff Pleiss
Martin Jankowiak
David Eriksson
Anil Damle
Jacob R. Gardner
— In Neural Information Processing Systems, 2020
PDF
Github
Talk
Exact Gaussian processes on a million data points
Ke Wang*
Geoff Pleiss*
Jacob R. Gardner
Stephen Tyree
Kilian Q. Weinberger
Andrew Gordon Wilson
* Authors contributed equally
— In Neural Information Processing Systems, 2019
PDF
Github
GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration.
[Spotlight presentation]
Jacob R. Gardner*
Geoff Pleiss*
David Bindel
Kilian Q. Weinberger
Andrew Gordon Wilson
* Authors contributed equally
— In Neural Information Processing Systems, 2018
PDF
Github
Talk
Constant Time Predictive Distributions for Gaussian Processes
Geoff Pleiss
Jacob R. Gardner
Andrew Gordon Wilson
Kilian Q. Weinberger
— In International Conference on Machine Learning, 2018
PDF
Github
Product Kernel Interpolation for Scalable Gaussian Processes
Jacob R. Gardner
Geoff Pleiss
Ruihan Wu
Andrew Gordon Wilson
Kilian Q. Weinberger
— In Artificial Intelligence and Statistics, 2018
PDF
Github
Spatiotemporal Modeling
NEW
A Nearby Dark Molecular Cloud in the Local Bubble Revealed via H_2 Fluorescence
Blakesley Burkhart
Thavisha E. Dharmawardena
Shmuel Bialy
Thomas J. Haworth
Fernando Cruz Aguirre
Young-Soo Jo
B.G. Andersson
Haeun Chung
Jerry Edelstein
Isabelle Grenier
Erika T. Hamden
Wonyong Han
Keri Hoadley
Min-Young Lee
Kyoung-Wook Min
Thomas Müller
Kate Pattle
J. E. G. Peek
Geoff Pleiss
David Schiminovich
Kwang-Il Seon
Andrew Gordon Wilson
Catherine Zucker
— In Nature Astronomy, 2025
PDF
Variational Nearest Neighbor Gaussian Processes
Luhuan Wu
Geoff Pleiss
John P. Cunningham
— In International Conference on Machine Learning, 2022
PDF
Github
Talk
Scalable Cross Validation Losses for Gaussian Process Models
Martin Jankowiak
Geoff Pleiss
— In , 2021
PDF
Hierarchical Inducing Point Gaussian Process for Inter-domain Observations
Luhuan Wu*
Andrew Miller*
Lauren Anderson
Geoff Pleiss
David Blei
John P. Cunningham
* Authors contributed equally
— In Artificial Intelligence and Statistics, 2021
PDF
Github
Potential Predictability of Regional Precipitation and Discharge Extremes Using Synoptic-Scale Climate Information via Machine Learning
James Knighton
Geoff Pleiss
Elizabeth Carter
Steven Lyon
M. Todd Walter
Scott Steinschneider
— In Journal of Hydrometeorology, 2019
PDF
Probabilistic Modeling
How Inductive Bias in Machine Learning Aligns with Optimality in Economic Dynamics
Mahdi Ebrahimi Kahou
James Yu
Jesse Perla
Geoff Pleiss
— Under Submission
PDF
MCMC-driven learning
Alexandre Bouchard-Côté
Trevor Campbell
Geoff Pleiss
Nikola Surjanovic
— Under Submission
PDF
Harnessing Interpretable and Unsupervised Machine Learning to Address Big Data From Modern X-Ray Diffraction
Jordan Venderley
Michael Matty
Krishnanand Mallayya
Matthew Krogstad
Jacob Ruff
Geoff Pleiss
Varsha Kishore
David Mandrus
Daniel Phelan
Lekhanath Poudel
Andrew Gordon Wilson
Kilian Q. Weinberger
Puspa Upreti
Michael R. Norman
Stephan Rosenkranz
Ray Osborn
Eun-Ah Kim
— In Proceedings of the National Academy of Sciences, 2022
PDF
The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective
Geoff Pleiss
John P. Cunningham
— In Neural Information Processing Systems, 2021
PDF
Github
Talk
Rectangular Flows for Manifold Learning
Anthony L. Caterini*
Gabriel Loaiza-Ganem*
Geoff Pleiss
John P. Cunningham
* Authors contributed equally
— In Neural Information Processing Systems, 2021
PDF
Github
Talk
Uses and Abuses of the Cross-Entropy Loss: Case Studies in Modern Deep Learning
[Oral Presentation]
Elliott Gordon-Rodriguez
Gabriel Loaiza-Ganem
Geoff Pleiss
John P. Cunningham
— In NeurIPS "I Can't Believe It's Not Better!" Workshop, 2020
PDF
Github
Deep Sigma Point Processes
Martin Jankowiak
Geoff Pleiss
Jacob R. Gardner
— In Uncertainty in Artificial Intelligence, 2020
PDF
Github
Parametric Gaussian Process Regressors
Martin Jankowiak
Geoff Pleiss
Jacob R. Gardner
— In International Conference on Machine Learning, 2020
PDF
Github
Talk
Computer Vision
NEW
Lifelong Learning of Video Diffusion Models From a Single Video Stream
Jason Yoo
Yingchen He
Saeid Naderiparizi
Dylan Green
Gido M. van de Ven
Geoff Pleiss
Frank Wood
— Under Submission
PDF
Layerwise Proximal Replay: A Proximal Point Method for Online Continual Learning
Jinsoo Yoo
Yunpeng Liu
Frank Wood
Geoff Pleiss
— In International Conference on Machine Learning, 2024
PDF
Github
Pseudo-lidar++: Accurate depth for 3d object detection in autonomous driving
Yurong You*
Yan Wang*
Wei-Lun Chao*
Divyansh Garg
Geoff Pleiss
Bharath Hariharan
Mark Campbell
Kilian Q. Weinberger
* Authors contributed equally
— In International Conference on Learning Representations, 2020
PDF
Github
Deep feature interpolation for image content changes
Paul Upchurch*
Jacob Gardner*
Geoff Pleiss
Kavita Bala
Robert Pless
Noah Snavely
Kilian Q. Weinberger
* Authors contributed equally
— In Computer Vision and Pattern Recognition, 2017
PDF
Github