You need to enable JavaScript to run this app.
Geoff Pleiss
Research
Overview
Uncertainty Quantification
Bayesian Optimization
Deep Learning
Scalable Gaussian Processes via Numerical Methods
Spatiotemporal Modeling
Probabilistic Modeling
Computer Vision
Teaching
(2025) STAT 547U (Topics in Deep Learning Theory)
(2024) STAT 406 (Methods for Statistical Learning)
(2023) STAT 520P (Bayesian Optimization)
STAT 548 (PhD Qualifying Course)
Open Source
GPyTorch
LinearOperator
Blog
Neural Network Calibration
Area Under the Margin (AUM)
CV
Bio
Google Scholar
Github
Complete List of Publications by Topic
Uncertainty Quantification
NEW
Theoretical Limitations of Ensembles in the Age of Overparameterization
Niclas Dern
John P. Cunningham
Geoff Pleiss
— Under Submission
PDF
Github
Sharp Calibrated Gaussian Processes
Alexandre Capone
Sandra Hirche
Geoff Pleiss
— In NeurIPS, 2023
PDF
Posterior and Computational Uncertainty in Gaussian Processes
Jonathan Wenger
Geoff Pleiss
Marvin Pförtner
Philipp Hennig
John P. Cunningham
— In NeurIPS, 2022
PDF
Github
Deep Ensembles Work, But Are They Necessary?
Taiga Abe*
E. Kelly Buchanan*
Geoff Pleiss
Richard Zemel
John P. Cunningham
* Authors contributed equally
— In NeurIPS, 2022
PDF
Github
Talk
On Fairness and Calibration
Geoff Pleiss*
Manish Raghavan*
Felix Wu
Jon Kleinberg
Kilian Q. Weinberger
* Authors contributed equally
— In NeurIPS, 2017
PDF
Github
On Calibration of Modern Neural Networks
Chuan Gao*
Geoff Pleiss*
Yu Sun*
Kilian Q. Weinberger
* Authors contributed equally
— In ICML, 2017
PDF
Github
Talk
Bayesian Optimization
Approximation-Aware Bayesian Optimization
Natalie Maus
Kyurae Kim
Geoff Pleiss
David Eriksson
John P. Cunningham
Jacob R. Gardner
— In NeurIPS, 2024
PDF
Github
A Sober Look at LLMs for Material Discovery: Are They Actually Good for Bayesian Optimization Over Molecules?
Agustinus Kristiadi
Felix Strieth-Kalthoff
Marta Skreta
Pascal Poupart
Alán Aspuru-Guzik
Geoff Pleiss
— In ICML, 2024
PDF
Github
Fast Matrix Square Roots with Applications to Gaussian Processes and Bayesian Optimization
Geoff Pleiss
Martin Jankowiak
David Eriksson
Anil Damle
Jacob R. Gardner
— In NeurIPS, 2020
PDF
Github
Talk
Deep Learning
NEW
Theoretical Limitations of Ensembles in the Age of Overparameterization
Niclas Dern
John P. Cunningham
Geoff Pleiss
— Under Submission
PDF
Github
Pathologies of Predictive Diversity in Deep Ensembles
[featured paper]
Taiga Abe
E. Kelly Buchanan
Geoff Pleiss
John P. Cunningham
— In TMLR, 2024
PDF
Talk
Deep Ensembles Work, But Are They Necessary?
Taiga Abe*
E. Kelly Buchanan*
Geoff Pleiss
Richard Zemel
John P. Cunningham
* Authors contributed equally
— In NeurIPS, 2022
PDF
Github
Talk
The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective
Geoff Pleiss
John P. Cunningham
— In NeurIPS, 2021
PDF
Github
Talk
Identifying Mislabeled Data using the Area Under the Margin Ranking
Geoff Pleiss
Tianyi Zhang
Ethan R. Elenberg
Kilian Q. Weinberger
— In NeurIPS, 2020
PDF
Github
Talk
Snapshot Ensembles: Train 1, get M for free
Gao Huang*
Yixuan Li*
Geoff Pleiss
Zhuang Liu
John Hopcroft
Kilian Q. Weinberger
* Authors contributed equally
— In ICLR, 2017
PDF
Github
On Calibration of Modern Neural Networks
Chuan Gao*
Geoff Pleiss*
Yu Sun*
Kilian Q. Weinberger
* Authors contributed equally
— In ICML, 2017
PDF
Github
Talk
Scalable Gaussian Processes via Numerical Methods
NEW
Computation-Aware Gaussian Processes: Model Selection And Linear-Time Inference
Jonathan Wenger
Kaiwen Wu
Philipp Hennig
Jacob R. Gardner
Geoff Pleiss
John P. Cunningham
— In NeurIPS, 2024
PDF
Github
Computation-Aware Gaussian Processes: Model Selection And Linear-Time Inference
Jonathan Wenger
Kaiwen Wu
Philipp Hennig
Jacob R. Gardner
Geoff Pleiss
John P. Cunningham
— In NeurIPS, 2024
Large-Scale Gaussian Processes via Alternating Projection
Kaiwen Wu
Jonathan Wenger
Hadyn Jones
Geoff Pleiss
Jacob R. Gardner
— In AISTATS, 2024
PDF
Github
CoLA: Exploiting Compositional Structure for Automatic and Efficient Numerical Linear Algebra
Andres Potapczynski*
Marc Anton Finzi*
Geoff Pleiss
Andrew Gordon Wilson
* Authors contributed equally
— In NeurIPS, 2023
PDF
Github
Posterior and Computational Uncertainty in Gaussian Processes
Jonathan Wenger
Geoff Pleiss
Marvin Pförtner
Philipp Hennig
John P. Cunningham
— In NeurIPS, 2022
PDF
Github
Preconditioning for Scalable Gaussian Process Hyperparameter Optimization
[long oral]
Jonathan Wenger
Geoff Pleiss
Philipp Hennig
John P. Cunningham
Jacob R. Gardner
— In ICML, 2022
PDF
Github
Talk
Bias-Free Scalable Gaussian Processes via Randomized Truncations
Andres Potapczynski*
Luhuan Wu*
Dan Biderman*
Geoff Pleiss
John P. Cunningham
* Authors contributed equally
— In ICML, 2021
PDF
Github
Talk
A Scalable and Flexible Framework for Gaussian Processes via Matrix-Vector Multiplication
Geoff Pleiss
Ph.D. Thesis, 2020
PDF
Fast Matrix Square Roots with Applications to Gaussian Processes and Bayesian Optimization
Geoff Pleiss
Martin Jankowiak
David Eriksson
Anil Damle
Jacob R. Gardner
— In NeurIPS, 2020
PDF
Github
Talk
Exact Gaussian Processes on a Million Data Points
Ke Alexander Wang*
Geoff Pleiss*
Jacob R. Gardner
Stephen Tyree
Kilian Q. Weinberger
Andrew Gordon Wilson
* Authors contributed equally
— In NeurIPS, 2019
PDF
Github
GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration
[spotlight]
Jacob R. Gardner*
Geoff Pleiss*
David Bindel
Kilian Q. Weinberger
Andrew Gordon Wilson
* Authors contributed equally
— In NeurIPS, 2018
PDF
Github
Talk
Constant-Time Predictive Distributions for Gaussian Processes
Geoff Pleiss
Jacob R. Gardner
Kilian Q. Weinberger
Andrew Gordon Wilson
— In ICML, 2018
PDF
Github
Product Kernel Interpolation for Scalable Gaussian Processes
Jacob R. Gardner
Geoff Pleiss
Ruihan Wu
Kilian Q. Weinberger
Andrew Gordon Wilson
— In AISTATS, 2018
PDF
Github
Spatiotemporal Modeling
Variational Nearest Neighbor Gaussian Processes
Luhuan Wu
Geoff Pleiss
John P. Cunningham
— In ICML, 2022
PDF
Github
Talk
Scalable Cross Validation Losses for Gaussian Process Models
Martin Jankowiak
Geoff Pleiss
—
Tech Report
, 2021
PDF
Hierarchical Inducing Point Gaussian Process for Inter-domain Observations
Luhuan Wu*
Andrew Miller*
Lauren Anderson
Geoff Pleiss
David Blei
John P. Cunningham
* Authors contributed equally
— In AISTATS, 2021
PDF
Github
Potential Predictability of Regional Precipitation and Discharge Extremes Using Synoptic-Scale Climate Information via Machine Learning
James Knighton
Geoff Pleiss
Elizabeth Carter
Steven Lyon
M Todd Walter
Scott Steinschneider
— In Journal of Hydrometeorology, 2019
PDF
Probabilistic Modeling
How Inductive Bias in Machine Learning Aligns with Optimality in Economic Dynamics
Mahdi Ebrahimi Kahou
James Yu
Jesse Perla
Geoff Pleiss
— Under Submission
PDF
Harnessing Interpretable and Unsupervised Machine Learning to Address Big Data From Modern X-Ray Diffraction
Jordan Venderley
Michael Matty
Krishnanand Mallayya
Matthew Krogstad
Jacob Ruff
Geoff Pleiss
Varsha Kishore
David Mandrus
Daniel Phelan
Lekhanath Poudel
Andrew Gordon Wilson
Kilian Q. Weinberger
Puspa Upreti
Michael R. Norman
Stephan Rosenkranz
Ray Osborn
Eun-Ah Kim
— In Proceedings of the National Academy of Sciences, 2022
PDF
Rectangular Flows for Manifold Learning
Anthony L. Caterini*
Gabriel Loaiza-Ganem*
Geoff Pleiss
John P. Cunningham
* Authors contributed equally
— In NeurIPS, 2021
PDF
Github
Talk
The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective
Geoff Pleiss
John P. Cunningham
— In NeurIPS, 2021
PDF
Github
Talk
Uses and Abuses of the Cross-Entropy Loss: Case Studies in Modern Deep Learning
Elliott Gordon-Rodriguez
Gabriel Loaiza-Ganem
Geoff Pleiss
John P. Cunningham
— In NeurIPS "I Can't Believe It's Not Better!" Workshop, 2020
PDF
Github
Talk
Deep Sigma Point Processes
Martin Jankowiak
Geoff Pleiss
Jacob R. Gardner
— In UAI, 2020
PDF
Github
Parametric Gaussian Process Regressors
Martin Jankowiak
Geoff Pleiss
Jacob R. Gardner
— In ICML, 2020
PDF
Github
Talk
Computer Vision
Layerwise proximal replay: A proximal point method for online continual learning.
Jinsoo Yoo
Yunpeng Liu
Frank Wood
Geoff Pleiss
— In ICML, 2024
PDF
Github
Pseudo-lidar++: Accurate depth for 3d object detection in autonomous driving.
Yurong You*
Yan Wang*
Wei-Lun Chao*
Divyansh Garg
Geoff Pleiss
Bharath Hariharan
Mark Campbell
Kilian Q. Weinberger
* Authors contributed equally
— In ICLR, 2020
PDF
Github
Convolutional Networks with Dense Connectivity
Gao Huang*
Zhuang Liu*
Geoff Pleiss
Laurens van der Maaten
Kilian Q. Weinberger
* Authors contributed equally
— In Pattern Analysis and Machine Intelligence, 2019
PDF
Github
Deep Feature Interpolation for Image Content Changes
Paul Upchurch*
Jacob R. Gardner*
Geoff Pleiss
Robert Pless
Noah Snavely
Kavita Bala
Kilian Q. Weinberger
* Authors contributed equally
— In CVPR, 2017
PDF
Github